A185422
Forests of k increasing plane unary-binary trees on n nodes. Generalized Stirling numbers of the second kind associated with A185415.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 9, 15, 6, 1, 39, 75, 45, 10, 1, 189, 459, 330, 105, 15, 1, 1107, 3087, 2709, 1050, 210, 21, 1, 7281, 23535, 23814, 11109, 2730, 378, 28, 1, 54351, 197235, 228285, 122850, 36099, 6174, 630, 36, 1
Offset: 1
Triangle begins
n\k|....1......2......3......4......5......6......7
===================================================
..1|....1
..2|....1......1
..3|....3......3......1
..4|....9.....15......6......1
..5|...39.....75.....45.....10......1
..6|..189....459....330....105.....15......1
..7|.1107...3087...2709...1050....210.....21......1
..
Examples of the recurrence:
T(5,1) = 39 = T(4,0)+1*T(4,1)+2*T(4,2) = 1*9+2*15;
T(6,3) = 330 = T(5,2)+3*T(5,3)+3*4*T(5,4) = 75+3*45+12*10.
Examples of forests:
T(4,1) = 9. The 9 plane increasing unary-binary trees on 4 nodes are shown in the example section of A080635.
T(4,2) = 15. The 15 forests consisting of two plane increasing unary-binary trees on 4 nodes consist of the 12 forests
......... ......... ...3.....
.2...3... .3...2... ...|.....
..\./.... ..\./.... ...2.....
...1...4. ...1...4. ...|.....
......... ......... ...1...4.
.
......... ......... ...4.....
.2...4... .4...2... ...|.....
..\./.... ..\./.... ...2.....
...1...3. ...1...3. ...|.....
......... ......... ...1...3.
.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...1...2. ...1...2. ...|.....
......... ......... ...1...2.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...2...1. ...2...1. ...|.....
......... ......... ...2...1.
.
and the three remaining forests
......... ......... ..........
..2..4... ..3..4... ..4...3...
..|..|... ..|..|... ..|...|...
..1..3... ..1..2... ..1...2...
......... ......... ..........
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
-
#A185422
P := proc(n,x)
description 'polynomial sequence P(n,x) A185415'
if n = 0
return 1
else
return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
end proc:
with combinat:
T:= (n,k) -> 1/k!*add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k):
for n from 1 to 10 do
seq(T(n,k),k = 1..n);
end do;
-
t[n_, k_] := t[n, k] = t[n-1, k-1] + k*t[n-1, k] + k*(k+1)*t[n-1, k+1]; t[n_, n_] = 1; t[n_, k_] /; Not[1 <= k <= n] = 0; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, from given recurrence *)
-
{T(n,k)=if(n<1||k<1||k>n,0,if(n==k,1,T(n-1,k-1)+k*T(n-1,k)+k*(k+1)*T(n-1,k+1)))}
-
{T(n,k)=round(n!*polcoeff(polcoeff(exp(y*(-1/2+sqrt(3)/2*tan(sqrt(3)/2*x+Pi/6+x*O(x^n)))+y*O(y^k)),n,x),k,y))}
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A080635(n+1), 10) # Peter Luschny, Jan 18 2016
A185423
Ordered forests of k increasing plane unary-binary trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 6, 6, 9, 30, 36, 24, 39, 150, 270, 240, 120, 189, 918, 1980, 2520, 1800, 720, 1107, 6174, 16254, 25200, 25200, 15120, 5040, 7281, 47070, 142884, 266616, 327600, 272160, 141120, 40320, 54351, 394470, 1369710, 2948400, 4331880
Offset: 1
Triangle begins
n\k|....1......2......3......4......5......6......7
===================================================
..1|....1
..2|....1......2
..3|....3......6......6
..4|....9.....30.....36.....24
..5|...39....150....270....240....120
..6|..189....918...1980...2520...1800....720
..7|.1107...6174..16254..25200..25200..15120...5040
..
Examples of recurrence relation:
T(5,3) = 270 = 3*(T(4,2) + T(4,3) + T(4,4)) = 3*(30+36+24);
T(6,1) = 1*(T(5,0) + T(5,1) + T(5,2)) = 39+150.
Examples of ordered forests:
T(4,2) = 30. The 15 unordered forests consisting of two plane increasing unary-binary trees on 4 nodes are shown below. We can order the trees in a forest in two ways giving rise to 30 ordered forests.
......... ......... ...3.....
.2...3... .3...2... ...|.....
..\./.... ..\./.... ...2.....
...1...4. ...1...4. ...|.....
......... ......... ...1...4.
.
......... ......... ...4.....
.2...4... .4...2... ...|.....
..\./.... ..\./.... ...2.....
...1...3. ...1...3. ...|.....
......... ......... ...1...3.
.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...1...2. ...1...2. ...|.....
......... ......... ...1...2.
.
......... ......... ...4.....
.3...4... .4...3... ...|.....
..\./.... ..\./.... ...3.....
...2...1. ...2...1. ...|.....
......... ......... ...2...1.
.
......... ......... ..........
..2..4... ..3..4... ..4...3...
..|..|... ..|..|... ..|...|...
..1..3... ..1..2... ..1...2...
......... ......... ..........
-
#A185423
P := proc(n,x)
description 'polynomial sequence P(n,x) A185415'
if n = 0 return 1
else
return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
end proc:
with combinat:
T:=(n,k) -> add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k):
for n from 1 to 10 do
seq(T(n,k),k = 1..n);
end do;
-
{T(n,k)=if(n<1||k<1||k>n,0,if(n==1,if(k==1,1,0),k*(T(n-1,k-1)+T(n-1,k)+T(n-1,k+1))))}
A101280
Triangle T(n,k) (n >= 1, 0 <= k <= floor((n-1)/2)) read by rows, where T(n,k) = (k+1)T(n-1,k) + (2n-4k)T(n-1,k-1).
Original entry on oeis.org
1, 1, 1, 2, 1, 8, 1, 22, 16, 1, 52, 136, 1, 114, 720, 272, 1, 240, 3072, 3968, 1, 494, 11616, 34304, 7936, 1, 1004, 40776, 230144, 176896, 1, 2026, 136384, 1328336, 2265344, 353792, 1, 4072, 441568, 6949952, 21953408, 11184128, 1, 8166, 1398000, 33981760
Offset: 1
Triangle begins:
1;
1,
1, 2;
1, 8,
1, 22, 16;
1, 52, 136,
1, 114, 720, 272;
...
From _Peter Bala_, Jun 26 2012: (Start)
n = 4: the 9 weighted plane increasing 0-1-2 trees on 4 vertices are
..................................................................
..4...............................................................
..|...............................................................
..3..........4...4...............4...4...............3...3........
..|........./.....\............./.....\............./.....\.......
..2....2...3.......3...2...3...2.......2...3...4...2.......2...4..
..|.....\./.........\./.....\./.........\./.....\./.........\./...
..1...(t)1........(t)1....(t)1........(t)1....(t)1........(t)1....
..................................................................
..3...4...4...3...................................................
...\./.....\./....................................................
.(t)2....(t)2.....................................................
....|.......|.....................................................
....1.......1.....................................................
Hence R(4,t) = 1 + 8*t.
(End)
- D. Foata and V. Strehl, "Euler numbers and variations of permutations", in Colloquio Internazionale sulle Teorie Combinatorie, Rome, September 1973, (Atti dei Convegni Lincei 17, Rome, 1976), 129.
- Guoniu Han, Frédéric Jouhet, Jiang Zeng, Two new triangles of q-integers via q-Eulerian polynomials of type A and B, Ramanujan J (2013) 31:115-127, DOI 10.1007/s11139-012-9389-3
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 4.
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- François Bergeron, Philippe Flajolet and Bruno Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Leonard Carlitz and Richard Scoville, Generalized Eulerian numbers: combinatorial applications, Journal für die reine und angewandte Mathematik 265 (1974), 111.
- Colin Defant, Troupes, Cumulants, and Stack-Sorting, arXiv:2004.11367 [math.CO], 2020.
- Diego Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052 [math.CA], 2005.
- Dominique Foata and Marcel-Paul Schützenberger, Théorie géometrique des polynômes eulériens, arXiv:math/0508232 [math.CO], 2005; Lecture Notes in Math. 138 (1970), 81-83.
- Shi-Mei Ma, On gamma-vectors and the derivatives of the tangent and secant functions, arXiv:1304.6654 [math.CO], 2013.
- Shi-Mei Ma, Jun Ma, and Yeong-Nan Yeh, On certain combinatorial expansions of descent polynomials and the change of grammars, arXiv:1802.02861 [math.CO], 2018.
- Shi-Mei Ma, Jianfeng Wang, Guiying Yan, Jean Yeh, and Yeong-Nan Yeh, Symmetric decompositions and Euler-Stirling statistics on Stirling permutations, arXiv:2507.17667 [math.CO], 2025. See p. 5.
- Shi-Mei Ma and Yeong-Nan Yeh, The alternating run polynomials of permutations, arXiv:1904.11437 [math.CO], 2019. See p. 4.
- Alexander Postnikov, Victor Reiner, and Lauren Williams, Faces of generalized permutohedra, arXiv:math/0609184 [math.CO], 2006-2007. [_Peter Bala_, Oct 28 2008]
- Louis W. Shapiro, Wen-Jin Woan, and Seyoum Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
- Andrei K. Svinin, Somos-4 equation and related equations, arXiv:2307.05866 [math.CA], 2023. See p. 16.
The numbers 2^{n-1-k} T(n, k) form the array shown in
A008303.
-
T:=proc(n,k) if k<0 then 0 elif n=1 and k=0 then 1 elif k>floor((n-1)/2) then 0 else (k+1)*T(n-1,k)+(2*n-4*k)*T(n-1,k-1) fi end: for n from 1 to 13 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form # Emeric Deutsch, Aug 06 2005
-
t[, k?Negative] = 0; t[1, 0] = 1; t[n_, k_] /; k > (n-1)/2 = 0; t[n_, k_] := t[n, k] = (k+1)*t[n-1, k] + (2*n-4*k)*t[n-1, k-1]; Table[t[n, k], {n, 1, 13}, {k, 0, (n-1)/2}] // Flatten (* Jean-François Alcover, Nov 22 2012 *)
A131178
Non-plane increasing unary binary (0-1-2) trees where the nodes of outdegree 1 come in 2 colors.
Original entry on oeis.org
1, 2, 5, 16, 64, 308, 1730, 11104, 80176, 643232, 5676560, 54650176, 569980384, 6401959328, 77042282000, 988949446144, 13488013248256, 194780492544512, 2969094574403840, 47640794742439936, 802644553810683904, 14166772337295285248, 261410917571703825920
Offset: 1
G.f. = x + 2*x^2 + 5*x^3 + 16*x^4 + 64*x^5 + 308*x^6 + 1730*x^7 + 11104*x^8 + ...
a(3) = 5: Denoting the two types of node of outdegree 1 by the letters a or b, the 5 possible trees are
.
. 1a 1b 1a 1b 1
. | | | | / \
. 2a 2b 2b 2a 2 3
. | | | |
. 3 3 3 3
- _Peter Bala_, Sep 01 2011
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Lapo Cioni, Luca Ferrari, and Corentin Henriet. A direct bijection between two-stack sortable permutations and fighting fish, Euro. Conf. Comb., Graph Theory Appl. (2023) No. 12, 283-289.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
-
E:= (2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x)):
S:= map(simplify,series(E,x,101)):
seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 23 2016
-
max = 25; f[x_] := (2*(Exp[Sqrt[2]*x] - 1))/((2 + Sqrt[2]) - (2 - Sqrt[2])*Exp[Sqrt[2]*x]); Drop[ Simplify[ CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!], 1] (* Jean-François Alcover, Oct 05 2011 *)
-
x='x+O('x^66); /* that many terms */
default(realprecision,1000); /* working with floats here */
egf=(2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x));
round(Vec(serlaplace(egf))) /* show terms */
/* Joerg Arndt, Sep 01 2011 */
-
/* the following program should be preferred. */
Vec( serlaplace( serreverse( intformal( 1/(1+2*x+1/2*x^2) + O(x^66) ) ) ) )
\\ Joerg Arndt, Mar 01 2014
-
{a(n) = if( n<1, 0, n! * polcoeff( 2 / (-2 + quadgen(8) * (-1 + 2 / (1 - exp(-quadgen(8) * x + x * O(x^n))))), n))};
Changed offset to 1 to agree with name and example. -
Michael Somos, Nov 23 2016
A162976
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k double descents and initial descents (n>=0; 0<=k<=max(0,n-1)) [we say that i is a doubledescent of a permutation p if p(i) > p(i+1) > p(i+2); we say that a permutation p has an initial descent if p(1) > p(2)].
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 9, 11, 3, 1, 39, 48, 28, 4, 1, 189, 297, 166, 62, 5, 1, 1107, 1902, 1419, 476, 129, 6, 1, 7281, 14391, 11637, 5507, 1235, 261, 7, 1, 54351, 118044, 111438, 56400, 19096, 3020, 522, 8, 1, 448821, 1078245, 1119312, 673128, 239146, 61986
Offset: 0
T(4,2) = 3 because each of the permutations 4312, 4213, and 3214 has one doubledescent and one initial descent.
Triangle starts:
: 1;
: 1;
: 1, 1;
: 3, 2, 1;
: 9, 11, 3, 1;
: 39, 48, 28, 4, 1;
: 189, 297, 166, 62, 5, 1;
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983 (p. 195).
-
eq := s^2-(t+1)*s+1 = 0: sol := solve(eq, s): a := sol[1]: b := sol[2]: G := (exp(b*z)-exp(a*z))/(b*exp(a*z)-a*exp(b*z)): Gser := simplify(series(G, z = 0, 15)): P[0]:=1: for n to 11 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 11 do seq(coeff(P[n], t, j), j = 0 .. max(0,n-1)) end do;
# second Maple program:
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
add(b(u-j, o+j-1, 1), j=1..u)+
add(b(u+j-1, o-j, 2)*`if`(t=2, x, 1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Dec 09 2016
-
b[u_, o_, t_] := b[u, o, t] = If[u+o == 0, 1, Expand[Sum[b[u-j, o+j-1, 1], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2]*If[t == 2, x, 1], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}] ][b[0, n, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
A332776
a(n) = 1 + Sum_{k=1..n-1} binomial(n-1,k) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 2, 5, 18, 83, 464, 3041, 22810, 192595, 1807328, 18658097, 210138882, 2563990859, 33691089824, 474327797585, 7123141539610, 113656386574099, 1920170741071280, 34242622099969217, 642792206343361602, 12669617513914228907, 261613287097165614224, 5647565141926833774977
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
terms = 23; A[] = 0; Do[A[x] = Normal[Integrate[Exp[x] + A[x] (A[x] - 1), x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]!
A194770
E.g.f. 2*sqrt(3)/3*arctan(sqrt(3)*x/(x+2)).
Original entry on oeis.org
1, -1, 0, 6, -24, 0, 720, -5040, 0, 362880, -3628800, 0, 479001600, -6227020800, 0, 1307674368000, -20922789888000, 0, 6402373705728000, -121645100408832000, 0, 51090942171709440000, -1124000727777607680000
Offset: 1
-
With[{nn=30},Rest[CoefficientList[Series[2 Sqrt[3]/3 ArcTan[Sqrt[ 3] x/(x+2)],{x,0,nn}],x] Range[0,nn-1]!]] (* Harvey P. Dale, May 13 2019 *)
A230008
E.g.f. A(x) satisfies: A'(x) = -1 + A(x) + A(x)^2.
Original entry on oeis.org
1, 1, 3, 11, 51, 295, 2055, 16715, 155355, 1624255, 18868575, 241112675, 3361168275, 50760093175, 825541973175, 14385306834875, 267379330468875, 5280383597275375, 110414649582951375, 2437075699774353875, 56622329782817431875, 1381324610464997374375, 35302637257323023454375
Offset: 0
G.f. = 1 + x + 3*x^2 + 11*x^3 + 51*x^4 + 295*x^5 + 2055*x^6 + 16715*x^7 + ...
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 11*x^3/3! + 51*x^4/4! + 295*x^5/5! +...
where A(x)^2 = 1 + 2*x + 8*x^2/2! + 40*x^3/3! + 244*x^4/4! + 1760*x^5/5! +...
also log(A(x)) = x + 2*x^2/2! + 4*x^3/3! + 10*x^4/4! + 44*x^5/5! + 290*x^6/6! +...
and 1/A(x) = 1 - x - x^2/2! + x^3/3! + 7*x^4/4! + 5*x^5/5! - 85*x^6/6! +...
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- Veronica Bitonti, Bishal Deb, and Alan D. Sokal, Thron-type continued fractions (T-fractions) for some classes of increasing trees, arXiv:2412.10214 [math.CO], 2024. See pp. 5, 20, 57.
- Markus Kuba, Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], (17-November-2014); see p. 29
-
FullSimplify[CoefficientList[Series[(2*(Sqrt[5] - 2)*E^(Sqrt[5]*x) + Sqrt[5] - 1)/((3*Sqrt[5] - 7)*E^(Sqrt[5]*x) + 2), {x, 0, 15}], x] * Range[0, 15]!] (* Vaclav Kotesovec, Dec 20 2013 *)
FullSimplify[Flatten[{1, Table[5^((n+1)/2)*PolyLog[-n,(7-3*Sqrt[5])/2], {n, 1, 20}]}]] (* Vaclav Kotesovec, Nov 19 2014 after Markus Kuba *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(x+intformal(A-1/A+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A,X=x+x*O(x^n)); A=exp(serreverse(intformal(1/(1+2*sinh(X))))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=1+serreverse(intformal(1/(1+3*x+x^2 +x*O(x^n))))); n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
A232864
Number of permutations of n elements not cyclically containing the consecutive pattern 123.
Original entry on oeis.org
1, 1, 2, 3, 12, 45, 234, 1323, 8856, 65529, 543510, 4937031, 49030596, 526930677, 6101871426, 75686176035, 1001517264432, 14079895613937, 209594037600558, 3293305758743679, 54470994630103260, 945988795762018029, 17211193919411902938, 327371367293394753627
Offset: 0
a(4) = 12 comes from the 3 permutations 1324, 1423 and 1432, and by cyclically shifting we obtain 3 * 4 = 12 permutations.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
add(b(u-j, o+j-1, 1), j=1..u))
end:
a:= n-> `if`(n=0, 1, n*b(0, n-1, 1)):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 01 2013
-
b[u_,o_,t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 1], {j, 1, u}]];
a[n_]:= If[n==0, 1, n*b[0, n-1, 1]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 14 2017, after Alois P. Heinz *)
A335441
a(n) = 1 + Sum_{k=1..n-1} binomial(n-2,k-1) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 2, 4, 11, 40, 176, 907, 5360, 35668, 263789, 2146390, 19054040, 183248581, 1897952690, 21061861828, 249309196559, 3135518918800, 41754612283244, 586922460056851, 8684272948653068, 134919751191875572, 2195942678525060093, 37365571515146318650
Offset: 0
-
a[n_] := a[n] = 1 + Sum[Binomial[n - 2, k - 1] a[k] a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
terms = 23; A[] = 0; Do[A[x] = Normal[Integrate[Integrate[Exp[x] + A[x] D[A[x], x], x], x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]!
Comments