Original entry on oeis.org
1, 12, 50, 140, 315, 616, 1092, 1800, 2805, 4180, 6006, 8372, 11375, 15120, 19720, 25296, 31977, 39900, 49210, 60060, 72611, 87032, 103500, 122200, 143325, 167076, 193662, 223300, 256215, 292640, 332816, 376992, 425425, 478380, 536130
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
Cf.
A093565 ((8, 1) Pascal, column m=4).
Cf.
A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.
-
List([0..40], n-> (2*n+1)*Binomial(n+3,3)); # G. C. Greubel, Aug 30 2019
-
/* A000027 convolved with A001107 (excluding 0): */
A001107:=func; [&+[(n-i+1)*A001107(i): i in [1..n]]: n in [1..35]]; // Bruno Berselli, Dec 07 2012
-
[(2*n+1)*Binomial(n+3,3): n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
seq((2*n+1)*binomial(n+3,3), n=0..40); # G. C. Greubel, Aug 30 2019
-
Table[(2*n+1)*Binomial[n+3,3], {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
-
vector(40, n, (2*n-1)*binomial(n+2,3)) \\ G. C. Greubel, Aug 30 2019
-
[(2*n+1)*binomial(n+3,3) for n in (0..40)] # G. C. Greubel, Aug 30 2019
A374498
Square array read by antidiagonals: row n lists n-gonal pyramidal numbers that are products of smaller n-gonal pyramidal numbers.
Original entry on oeis.org
1, 36, 1, 45, 560, 1, 210, 19600, 4900, 1, 300, 43680, 513590, 56448, 1, 378, 45760, 333833500, 127008, 4750, 1, 630, 893200, 711410700, 259200, 1926049000, 58372180608, 1
Offset: 2
Array begins:
n\k| 1 2 3 4
---+--------------------------------
2 | 1 36 45 210
3 | 1 560 19600 43680
4 | 1 4900 513590 333833500
5 | 1 56448 127008 259200
6 | 1 4750 1926049000 655578709500
A261720
Array of pyramidal (3-dimensional figurate numbers) read by antidiagonals.
Original entry on oeis.org
1, 1, 4, 1, 5, 10, 1, 6, 14, 20, 1, 7, 18, 30, 35, 1, 8, 22, 40, 55, 56, 1, 9, 26, 50, 75, 91, 84, 1, 10, 30, 60, 95, 126, 140, 120, 1, 11, 34, 70, 115, 161, 196, 204, 165, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286
Offset: 1
Row 2: (1, 5, 14, 30, 55, ...) = (1, 4, 10, 20, 35, ...) + (0, 1, 4, 10, 20, 35, ...).
(1, 7, 22, 50, ...) is the binomial transform of (1, 6, 9, 4, 0, 0, 0, ...) 3rd row in Pascal's triangle (1,4) followed by zeros. (1, 7, 22, 50, ...) is the third partial sum of (1, 4, 4, 4, ...).
- Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 194.
Similar to
A080851 but without row n=0.
-
T[n_,k_]:=k(k+1)((k-1)n+3)/6; Flatten[Table[T[n-k+1,k],{n,11},{k,n}]] (* Stefano Spezia, Aug 15 2024 *)
A350397
a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal pyramidal numbers in exactly n ways, or -1 if no such number exists.
Original entry on oeis.org
305, 1980, 1900, 3321, 5256, 8310, 12516, 17108, 24832, 34249, 42381, 61697, 78766, 106956, 132994, 170325, 203415, 266595, 322943, 393828, 475520, 569416, 695799, 823447, 958300, 1149125, 1313545, 1565055, 1802736, 2088119, 2376250, 2748270, 3135195, 3548876
Offset: 3
For n = 3: 305 = 1 + 84 + 220 = 20 + 120 + 165 = 56 + 84 + 165.
A350210
a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero n-gonal pyramidal numbers in exactly n ways, or 0 if no such integer exists.
Original entry on oeis.org
140, 490, 1055, 1872, 2610, 4255, 5011, 8708, 7497, 10819, 12860, 15636, 18055, 24275, 27373, 28146, 30826, 38178, 41849, 44025, 36165, 47621, 57896, 64648, 60064, 67125, 71975, 81820, 77701, 91584, 91320, 99835, 98916, 108686, 112606, 123180, 120919, 142270
Offset: 3
For n = 3: 140 = 1 + 20 + 35 + 84 = 56 + 84 = 20 + 120. - _Martin Ehrenstein_, Jan 09 2022
A373711
Numbers that are simultaneously k-gonal and k-gonal pyramidal for some k >= 3.
Original entry on oeis.org
0, 1, 10, 120, 175, 441, 946, 1045, 1540, 4900, 5985, 7140, 23001, 23725, 48280, 195661, 245905, 314755, 801801, 975061, 1169686, 3578401, 10680265, 27453385, 55202400, 63016921, 101337426, 132361021, 197427385, 258815701, 432684460, 477132085, 837244045
Offset: 1
4900 is a term because it is both the 70th square and the 24th square pyramidal number.
A257199
a(n) = n*(n+1)*(n+2)*(n^2+2*n+17)/120.
Original entry on oeis.org
1, 5, 16, 41, 91, 182, 336, 582, 957, 1507, 2288, 3367, 4823, 6748, 9248, 12444, 16473, 21489, 27664, 35189, 44275, 55154, 68080, 83330, 101205, 122031, 146160, 173971, 205871, 242296, 283712, 330616, 383537, 443037, 509712, 584193, 667147, 759278, 861328, 974078
Offset: 1
For another version of the array, see
A080851.
-
[n*(n+1)*(n+2)*(n^2+2*n+17)/120: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
-
Table[n (n + 1) (n + 2) (n^2 + 2n + 17)/120, {n, 40}]
LinearRecurrence[{6,-15,20,-15,6,-1},{1,5,16,41,91,182},40] (* Harvey P. Dale, Mar 18 2018 *)
A180266
a(0) = 0; a(n) = C(2*n-2,n-1)*(n^2-2*n+2)/n for n >= 1.
Original entry on oeis.org
0, 1, 2, 10, 50, 238, 1092, 4884, 21450, 92950, 398684, 1696396, 7171892, 30161740, 126293000, 526864680, 2191034970, 9086921190, 37596989100, 155232577500, 639749274780, 2632212288420, 10814090022840, 44369043365400
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover, New York, 1966, Chptr. XVIII Ball Games, p. 196.
-
Figurate[ngon_, rank_, dim_] := Binomial[rank + dim - 2, dim - 1] ((rank - 1)*(ngon - 2) + dim)/dim; Table[ Figurate[n, n, n], {n, 50}]
Join[{0},Table[Binomial[2n-2,n-1] (n^2-2n+2)/n,{n,30}]] (* Harvey P. Dale, Sep 22 2019 *)
A257055
a(n) = n*(n + 1)*(n^2 - n + 3)/6.
Original entry on oeis.org
0, 1, 5, 18, 50, 115, 231, 420, 708, 1125, 1705, 2486, 3510, 4823, 6475, 8520, 11016, 14025, 17613, 21850, 26810, 32571, 39215, 46828, 55500, 65325, 76401, 88830, 102718, 118175, 135315, 154256, 175120, 198033, 223125, 250530, 280386, 312835, 348023, 386100
Offset: 0
Cf. similar sequences listed in
A256859.
-
[n*(n+1)*(n^2-n+3)/6: n in [0..40]];
-
Table[n (n + 1) (n^2 - n + 3)/6, {n, 40}]
-
vector(40, n, n--; n*(n+1)*(n^2-n+3)/6)
-
[n*(n+1)*(n^2-n+3)/6 for n in (0..40)]
A379973
Least k >= 3 such that A373711(n) is both k-gonal and k-gonal pyramidal.
Original entry on oeis.org
3, 3, 3, 3, 10, 14, 6, 8, 3, 4, 8, 3, 30, 11, 88, 14, 43, 50, 276, 17, 322, 20, 23, 26, 41, 29, 145, 32, 823, 35, 2378, 38, 41, 44, 47, 50, 53, 56, 59, 374, 62, 65, 2386, 68, 71, 74
Offset: 1
Comments