cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A051797 Partial sums of A007585.

Original entry on oeis.org

1, 12, 50, 140, 315, 616, 1092, 1800, 2805, 4180, 6006, 8372, 11375, 15120, 19720, 25296, 31977, 39900, 49210, 60060, 72611, 87032, 103500, 122200, 143325, 167076, 193662, 223300, 256215, 292640, 332816, 376992, 425425, 478380, 536130
Offset: 0

Views

Author

Barry E. Williams, Dec 11 1999

Keywords

Comments

a(n-1) is the n-th antidiagonal sum of the convolution array A213835. - Clark Kimberling, Jul 04 2012
Convolution of A000027 with A001107 (excluding 0). - Bruno Berselli, Dec 07 2012

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

Formula

a(n) = binomial(n+3,3)*(2*n+1) = (n+1)*(n+2)*(n+3)*(2*n+1)/6.
G.f.: (1+7*x)/(1-x)^5.
a(n) = A080851(8,n). - R. J. Mathar, Jul 28 2016
E.g.f.: (6 + 66*x + 81*x^2 + 25*x^3 + 2*x^4)*exp(x)/6. - G. C. Greubel, Aug 30 2019
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = (32*log(2) - 11)/10.
Sum_{n>=0} (-1)^n/a(n) = (8*Pi - 56*log(2) + 23)/10. (End)

A374498 Square array read by antidiagonals: row n lists n-gonal pyramidal numbers that are products of smaller n-gonal pyramidal numbers.

Original entry on oeis.org

1, 36, 1, 45, 560, 1, 210, 19600, 4900, 1, 300, 43680, 513590, 56448, 1, 378, 45760, 333833500, 127008, 4750, 1, 630, 893200, 711410700, 259200, 1926049000, 58372180608, 1
Offset: 2

Views

Author

Pontus von Brömssen, Jul 09 2024

Keywords

Comments

If there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's.
The first term in each row is 1, because 1 is an n-gonal pyramidal number for every n and it equals the empty product.

Examples

			Array begins:
  n\k| 1     2          3            4
  ---+--------------------------------
  2  | 1    36         45          210
  3  | 1   560      19600        43680
  4  | 1  4900     513590    333833500
  5  | 1 56448     127008       259200
  6  | 1  4750 1926049000 655578709500
		

Crossrefs

Cf. A080851, A374370, A374499 (second column).
Rows: A068143 (n=2 except the first term), A364151 (n=3), A374500 (n=4), A374501 (n=5), A374502 (n=6).

A261720 Array of pyramidal (3-dimensional figurate numbers) read by antidiagonals.

Original entry on oeis.org

1, 1, 4, 1, 5, 10, 1, 6, 14, 20, 1, 7, 18, 30, 35, 1, 8, 22, 40, 55, 56, 1, 9, 26, 50, 75, 91, 84, 1, 10, 30, 60, 95, 126, 140, 120, 1, 11, 34, 70, 115, 161, 196, 204, 165, 1, 12, 38, 80, 135, 196, 252, 288, 285, 220, 1, 13, 42, 90, 155, 231, 308, 372, 405, 385, 286
Offset: 1

Views

Author

Gary W. Adamson, Aug 29 2015

Keywords

Comments

First few sequences in the array:
1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... A000292
1, 5, 14, 30, 55, 91, 140, 204, 285, 385, ... A000330
1, 6, 18, 40, 75, 126, 196, 288, 405, 550, ... A002411
1, 7, 22, 50, 95, 161, 252, 372, 525, 715, ... A002412
1, 8, 26, 60, 115, 196, 308, 456, 645, 880, ... A002413
1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, ... A002414
1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, ... A007584
...
The corresponding bases to rows are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ...

Examples

			Row 2: (1, 5, 14, 30, 55, ...) = (1, 4, 10, 20, 35, ...) + (0, 1, 4, 10, 20, 35, ...).
(1, 7, 22, 50, ...) is the binomial transform of (1, 6, 9, 4, 0, 0, 0, ...) 3rd row in Pascal's triangle (1,4) followed by zeros. (1, 7, 22, 50, ...) is the third partial sum of (1, 4, 4, 4, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 194.

Crossrefs

Similar to A080851 but without row n=0.

Programs

  • Mathematica
    T[n_,k_]:=k(k+1)((k-1)n+3)/6; Flatten[Table[T[n-k+1,k],{n,11},{k,n}]] (* Stefano Spezia, Aug 15 2024 *)

Formula

T(n,k) = A080851(n,k).
Given: first sequence in the array is A000292: (1, 4, 10, 20, 35, ...) Subsequent rows are generated by adding (0, 1, 4, 10, 20, 35, ...) to the current row.
n-th row is the binomial transform of row 3 in Pascal's triangle (1,n) followed by zeros. Alternatively, begin with (1, 4, 10, 20, ...) being the binomial transform of (1, 3, 3, 1, 0, 0, 0, ...). Add (0, 1, 2, 1, 0, 0, 0, ...) to the latter to obtain the inverse binomial transform of the next row: (1, 5, 14, 30, 55,..); then repeat the operation.
The row starting (1, N, ...) is the 3rd partial sum of (1, (N-3), (N-3), (N-3), ...).
From Stefano Spezia, Aug 15 2024: (Start)
T(n,k) = k*(k + 1)*((k - 1)*n + 3)/6.
G.f. as array: x*y*(1 + x*(y - 1))/((1 - x)^2*(1 - y)^4).
E.g.f. as array: exp(y)*y*(exp(x)*(6 + 3*(1 + x)*y + x*y^2) - 3*(2 + y))/6. (End)

A350397 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal pyramidal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

305, 1980, 1900, 3321, 5256, 8310, 12516, 17108, 24832, 34249, 42381, 61697, 78766, 106956, 132994, 170325, 203415, 266595, 322943, 393828, 475520, 569416, 695799, 823447, 958300, 1149125, 1313545, 1565055, 1802736, 2088119, 2376250, 2748270, 3135195, 3548876
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 29 2021

Keywords

Examples

			For n = 3: 305 = 1 + 84 + 220 = 20 + 120 + 165 = 56 + 84 + 165.
		

Crossrefs

Extensions

a(10)-a(22) from Michael S. Branicky, Dec 29 2021
a(23)-a(36) from Martin Ehrenstein, Jan 14 2022

A350210 a(n) is the smallest positive integer which can be represented as the sum of distinct nonzero n-gonal pyramidal numbers in exactly n ways, or 0 if no such integer exists.

Original entry on oeis.org

140, 490, 1055, 1872, 2610, 4255, 5011, 8708, 7497, 10819, 12860, 15636, 18055, 24275, 27373, 28146, 30826, 38178, 41849, 44025, 36165, 47621, 57896, 64648, 60064, 67125, 71975, 81820, 77701, 91584, 91320, 99835, 98916, 108686, 112606, 123180, 120919, 142270
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 19 2021

Keywords

Examples

			For n = 3: 140 = 1 + 20 + 35 + 84 = 56 + 84 = 20 + 120. - _Martin Ehrenstein_, Jan 09 2022
		

Crossrefs

Extensions

a(35)-a(40) from Martin Ehrenstein, Jan 09 2022

A373711 Numbers that are simultaneously k-gonal and k-gonal pyramidal for some k >= 3.

Original entry on oeis.org

0, 1, 10, 120, 175, 441, 946, 1045, 1540, 4900, 5985, 7140, 23001, 23725, 48280, 195661, 245905, 314755, 801801, 975061, 1169686, 3578401, 10680265, 27453385, 55202400, 63016921, 101337426, 132361021, 197427385, 258815701, 432684460, 477132085, 837244045
Offset: 1

Views

Author

Kelvin Voskuijl, Jun 14 2024

Keywords

Comments

Matt Parker calls these numbers cannonball numbers, after the cannonball problem involving finding a number both square and square pyramidal.
If m==2 (mod 3), the m-gonal number A057145(m,(m^3-6*m^2+3*m+19)/9) = (m^2-4*m-2)*(m^2-4*m+1)*(m^3-6*m^2+3*m+19)/162 = A344410((m-2)/3) is a term. See comment in A027696. - Pontus von Brömssen, Dec 09 2024

Examples

			4900 is a term because it is both the 70th square and the 24th square pyramidal number.
		

Crossrefs

Formula

a(n) = A057145(A379973(n),A379974(n)) = A080851(A379973(n)-2,A379975(n)-1). - Pontus von Brömssen, Jan 09 2025

Extensions

a(13)-a(33) from Pontus von Brömssen, Dec 08 2024

A257199 a(n) = n*(n+1)*(n+2)*(n^2+2*n+17)/120.

Original entry on oeis.org

1, 5, 16, 41, 91, 182, 336, 582, 957, 1507, 2288, 3367, 4823, 6748, 9248, 12444, 16473, 21489, 27664, 35189, 44275, 55154, 68080, 83330, 101205, 122031, 146160, 173971, 205871, 242296, 283712, 330616, 383537, 443037, 509712, 584193, 667147, 759278, 861328, 974078
Offset: 1

Views

Author

Luciano Ancora, Apr 18 2015

Keywords

Comments

Antidiagonal sums of the array of pyramidal numbers shown in Table 2 of Sardelis and Valahas paper (see A261720).
This is the case j = 3 of (n^2 + (j-1)*n + (j+1)^2 + 1)*binomial(n+j-1, j)/((j+1)*(j+2)), where j is the space dimension: a(n) = (n^2+2*n+17)*binomial(n+2,3)/20.
The sequence is the binomial transform of (1, 4, 7, 7, 4, 1, 0, 0, 0, ...). - Gary W. Adamson, Aug 26 2015

Crossrefs

For another version of the array, see A080851.

Programs

  • Magma
    [n*(n+1)*(n+2)*(n^2+2*n+17)/120: n in [1..40]]; // Vincenzo Librandi, Apr 18 2015
  • Mathematica
    Table[n (n + 1) (n + 2) (n^2 + 2n + 17)/120, {n, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,5,16,41,91,182},40] (* Harvey P. Dale, Mar 18 2018 *)

Formula

G.f.: x*(1 - x + x^2)/(1 - x)^6.

A180266 a(0) = 0; a(n) = C(2*n-2,n-1)*(n^2-2*n+2)/n for n >= 1.

Original entry on oeis.org

0, 1, 2, 10, 50, 238, 1092, 4884, 21450, 92950, 398684, 1696396, 7171892, 30161740, 126293000, 526864680, 2191034970, 9086921190, 37596989100, 155232577500, 639749274780, 2632212288420, 10814090022840, 44369043365400
Offset: 0

Views

Author

Robert G. Wilson v, Aug 22 2010

Keywords

Comments

We may define Figurate Numbers F(r,n,d) with rank r, index n in dimension d as F(r,n,d) = binomial(r+d-2,d-1) *((r-1)*(n-2)+d) /d. These are polygonal numbers A057145 or A086271 in d=2, pyramidal numbers A080851 in d=3, and 4D pyramidal numbers A080852 in d=4, for example.
This sequence here is a(n) = F(n,n,n), the n-th n-gonal figurate number in n dimensions.
Limit_{n -> infinity} a(n+1)/a(n) = 4. - Robert G. Wilson v, Oct 30 2013

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover, New York, 1966, Chptr. XVIII Ball Games, p. 196.

Crossrefs

Programs

  • Mathematica
    Figurate[ngon_, rank_, dim_] := Binomial[rank + dim - 2, dim - 1] ((rank - 1)*(ngon - 2) + dim)/dim; Table[ Figurate[n, n, n], {n, 50}]
    Join[{0},Table[Binomial[2n-2,n-1] (n^2-2n+2)/n,{n,30}]] (* Harvey P. Dale, Sep 22 2019 *)

Formula

a(n) = A000984(n-1) + (n-1)*A024483(n). [R. J. Mathar, Nov 18 2010]
From Ilya Gutkovskiy, Mar 29 2018: (Start)
O.g.f.: 1 - (1 - 7*x + 10*x^2)/(1 - 4*x)^(3/2).
E.g.f.: 1 - exp(2*x)*((1 - 3*x)*BesselI(0,2*x) + 2*x*BesselI(1,2*x)).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+1). (End)

A257055 a(n) = n*(n + 1)*(n^2 - n + 3)/6.

Original entry on oeis.org

0, 1, 5, 18, 50, 115, 231, 420, 708, 1125, 1705, 2486, 3510, 4823, 6475, 8520, 11016, 14025, 17613, 21850, 26810, 32571, 39215, 46828, 55500, 65325, 76401, 88830, 102718, 118175, 135315, 154256, 175120, 198033, 223125, 250530, 280386, 312835, 348023, 386100
Offset: 0

Views

Author

Bruno Berselli, Apr 15 2015

Keywords

Comments

Partial sums of A037235.
After 0, this sequence is the 2nd diagonal of the square array in A080851.
For n > 2, a(n)-n is the 4th column of the triangular array in A208657.

Crossrefs

Cf. similar sequences listed in A256859.

Programs

  • Magma
    [n*(n+1)*(n^2-n+3)/6: n in [0..40]];
    
  • Mathematica
    Table[n (n + 1) (n^2 - n + 3)/6, {n, 40}]
  • PARI
    vector(40, n, n--; n*(n+1)*(n^2-n+3)/6)
    
  • Sage
    [n*(n+1)*(n^2-n+3)/6 for n in (0..40)]

Formula

G.f.: x*(1 + 3*x^2)/(1 - x)^5.
a(n) = 3*A000332(n+1) + A000332(n+3).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, May 27 2021

A379973 Least k >= 3 such that A373711(n) is both k-gonal and k-gonal pyramidal.

Original entry on oeis.org

3, 3, 3, 3, 10, 14, 6, 8, 3, 4, 8, 3, 30, 11, 88, 14, 43, 50, 276, 17, 322, 20, 23, 26, 41, 29, 145, 32, 823, 35, 2378, 38, 41, 44, 47, 50, 53, 56, 59, 374, 62, 65, 2386, 68, 71, 74
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2025

Keywords

Comments

For n <= 46, there is a unique k >= 3 such that A373711(n) is both k-gonal and k-gonal pyramidal. If this were true for all n, A027669 would be the sorted distinct terms of this sequence.

Crossrefs

Formula

A057145(a(n),A379974(n)) = A080851(a(n)-2,A379975(n)-1) = A373711(n).
Previous Showing 11-20 of 32 results. Next