cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A081142 12th binomial transform of (0,0,1,0,0,0,...).

Original entry on oeis.org

0, 0, 1, 36, 864, 17280, 311040, 5225472, 83607552, 1289945088, 19349176320, 283787919360, 4086546038784, 57954652913664, 811365140791296, 11234286564802560, 154070215745863680, 2095354934143746048
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Starting at 1, the three-fold convolution of A001021 (powers of 12).

Crossrefs

Cf. A001021.
Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), A038845 (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), this sequence (q=12), A027476 (q=15).

Programs

  • GAP
    List([0..20],n->12^(n-2)*Binomial(n,2)); # Muniru A Asiru, Nov 24 2018
  • Magma
    [12^(n-2)* Binomial(n, 2): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(coeff(series(x^2/(1-12*x)^3,x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    LinearRecurrence[{36,-432,1728},{0,0,1},30] (* or *) Table[(n-1) (n-2) 3^(n-3) 2^(2n-7),{n,20}] (* Harvey P. Dale, Jul 25 2013 *)
  • PARI
    vector(20, n, n--; 2^(2*n-5)*3^(n-2)*n*(n-1)) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [2^(2*n-5)*3^(n-2)*n*(n-1) for n in range(20)] # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = 36*a(n-1) - 432*a(n-2) + 1728*a(n-3), a(0) = a(1) = 0, a(2) = 1.
a(n) = 12^(n-2)*binomial(n, 2).
G.f.: x^2/(1 - 12*x)^3.
a(n) = 2^(2*n-5)*3^(n-2)*n*(n-1). - Harvey P. Dale, Jul 25 2013
E.g.f.: (1/2)*exp(12*x)*x^2. - Franck Maminirina Ramaharo, Nov 23 2018
From Amiram Eldar, Jan 06 2022: (Start)
Sum_{n>=2} 1/a(n) = 24 - 264*log(12/11).
Sum_{n>=2} (-1)^n/a(n) = 312*log(13/12) - 24. (End)

A081130 Square array of binomial transforms of (0,0,1,0,0,0,...), read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 3, 0, 0, 0, 1, 6, 6, 0, 0, 0, 1, 9, 24, 10, 0, 0, 0, 1, 12, 54, 80, 15, 0, 0, 0, 1, 15, 96, 270, 240, 21, 0, 0, 0, 1, 18, 150, 640, 1215, 672, 28, 0, 0, 0, 1, 21, 216, 1250, 3840, 5103, 1792, 36, 0, 0, 0, 1, 24, 294, 2160, 9375, 21504, 20412, 4608, 45, 0
Offset: 0

Views

Author

Paul Barry, Mar 08 2003

Keywords

Comments

Rows, of the square array, are three-fold convolutions of sequences of powers.

Examples

			The array begins as:
  0,  0,  0,   0,   0,    0, ...
  0,  0,  0,   0,   0,    0, ...
  0,  1,  1,   1,   1,    1, ... A000012
  0,  3,  6,   9,  12,   15, ... A008585
  0,  6, 24,  54,  96,  150, ... A033581
  0, 10, 80, 270, 640, 1250, ... A244729
The antidiagonal triangle begins as:
  0;
  0, 0;
  0, 0, 0;
  0, 0, 1, 0;
  0, 0, 1, 3,  0;
  0, 0, 1, 6,  6,  0;
  0, 0, 1, 9, 24, 10, 0;
		

Crossrefs

Main diagonal: A081131.
Rows: A000012 (n=2), A008585 (n=3), A033581 (n=4), A244729 (n=5).
Columns: A000217 (k=1), A001788 (k=2), A027472 (k=3), A038845 (k=4), A081135 (k=5), A081136 (k=6), A027474 (k=7), A081138 (k=8), A081139 (k=9), A081140 (k=10), A081141 (k=11), A081142 (k=12), A027476 (k=15).

Programs

  • Magma
    [k eq n select 0 else (n-k)^(k-2)*Binomial(k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, May 14 2021
    
  • Mathematica
    Table[If[k==n, 0, (n-k)^(k-2)*Binomial[k, 2]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 14 2021 *)
  • PARI
    T(n, k)=if (k==0, 0, k^(n-2)*binomial(n, 2));
    seq(nn) = for (n=0, nn, for (k=0, n, print1(T(k, n-k), ", ")); );
    seq(12) \\ Michel Marcus, May 14 2021
  • Sage
    flatten([[0 if (k==n) else (n-k)^(k-2)*binomial(k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 14 2021
    

Formula

T(n, k) = k^(n-2)*binomial(n, 2), with T(n, 0) = 0 (square array).
T(n, n) = A081131(n).
Rows have g.f. x^3/(1-k*x)^n.
From G. C. Greubel, May 14 2021: (Start)
T(k, n-k) = (n-k)^(k-2)*binomial(k,2) with T(n, n) = 0 (antidiagonal triangle).
Sum_{k=0..n} T(n, n-k) = A081197(n). (End)

Extensions

Term a(5) corrected by G. C. Greubel, May 14 2021

A173187 a(n) = binomial(n + 3, 3)*9^n.

Original entry on oeis.org

1, 36, 810, 14580, 229635, 3306744, 44641044, 573956280, 7102708965, 85232507580, 997220338686, 11422705697676, 128505439098855, 1423444863864240, 15556218869373480, 168007163789233584
Offset: 0

Views

Author

Zerinvary Lajos, Feb 12 2010

Keywords

Crossrefs

Programs

Formula

From Harvey P. Dale, May 19 2011: (Start)
a(n) = 36*a(n-1)-486*a(n-2)+ 2916*a(n-3)-6561*a(n-4).
G.f.: 1/(1-9*x)^4. (End)
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 1728*log(9/8) - 405/2.
Sum_{n>=0} (-1)^n/a(n) = 2700*log(10/9) - 567/2. (End)

A173188 a(n) = binomial(n + 5, 5)*9^n.

Original entry on oeis.org

1, 54, 1701, 40824, 826686, 14880348, 245525742, 3788111448, 55401129927, 775615818978, 10470813556203, 137072468372112, 1747673971744428, 21778706417122872, 266011342666286508, 3192136111995438096, 37707107822946112509, 439176902879019428046
Offset: 0

Views

Author

Zerinvary Lajos, Feb 12 2010

Keywords

Comments

Number of n-permutations (n>=5) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly five (5) u's.

Crossrefs

Programs

  • Magma
    [Binomial(n+5, 5)*9^n: n in [0..20]]; // Vincenzo Librandi, Oct 13 2011
  • Mathematica
    Table[Binomial[n + 5, 5]*9^n, {n, 0, 20}]

Formula

a(n) = C(n + 5, 5)*9^n.
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 184320*log(9/8) - 86835/4.
Sum_{n>=0} (-1)^n/a(n) = 450000*log(10/9) - 189645/4. (End)

A173191 a(n) = binomial(n + 6, 6)*9^n.

Original entry on oeis.org

1, 63, 2268, 61236, 1377810, 27280638, 491051484, 8207574804, 129269303163, 1939039547445, 27922169483208, 388371993720984, 5243021915233284, 68965903654222428, 886704475554288360, 11172476391984033336, 138259395350802412533, 1683511461036241140843
Offset: 0

Views

Author

Zerinvary Lajos, Feb 12 2010

Keywords

Comments

Number of n-permutations (n>=6) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly six (6) u's.

Crossrefs

Programs

Formula

a(n) = C(n + 6, 6)*9^n.
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 1042074/5 - 1769472*log(9/8).
Sum_{n>=0} (-1)^n/a(n) = 5400000*log(10/9) - 2844729/5. (End)

A173192 a(n) = binomial(n + 7, 7)*9^n.

Original entry on oeis.org

1, 72, 2916, 87480, 2165130, 46766808, 911952756, 16415149608, 277005649635, 4432090394160, 67810983030648, 998670840996816, 14231059484204628, 197045439012064080, 2660113426662865080, 35113497231949819056, 454280870438350784037, 5772039294981398197176
Offset: 0

Views

Author

Zerinvary Lajos, Feb 12 2010

Keywords

Comments

Number of n-permutations (n>=7) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly 7 u's.

Crossrefs

Programs

Formula

a(n) = C(n + 7, 7)*9^n.
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 16515072*log(9/8) - 19451943/10.
Sum_{n>=0} (-1)^n/a(n) = 63000000*log(10/9) - 13275423/2. (End)

A317052 Triangle read by rows: T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 9, 81, 1, 729, 18, 6561, 243, 1, 59049, 2916, 27, 531441, 32805, 486, 1, 4782969, 354294, 7290, 36, 43046721, 3720087, 98415, 810, 1, 387420489, 38263752, 1240029, 14580, 45, 3486784401, 387420489, 14880348, 229635, 1215, 1, 31381059609, 3874204890, 172186884, 3306744, 25515, 54
Offset: 0

Views

Author

Zagros Lalo, Jul 20 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013616 ((1+9*x)^n) and along skew diagonals pointing top-right in center-justified triangle given in A038291 ((9+x)^n).
The coefficients in the expansion of 1/(1-9*x-x^2) are given by the sequence generated by the row sums (see A099371).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 9.109772228646443655... (a metallic mean), when n approaches infinity; (see A176522: ((9+sqrt(85))/2)).

Examples

			Triangle begins:
  1;
  9;
  81, 1;
  729, 18;
  6561, 243, 1;
  59049, 2916, 27;
  531441, 32805, 486, 1;
  4782969, 354294, 7290, 36;
  43046721, 3720087, 98415, 810, 1;
  387420489, 38263752, 1240029, 14580, 45;
  3486784401, 387420489, 14880348, 229635, 1215, 1;
  31381059609, 3874204890, 172186884, 3306744, 25515, 54;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100.

Crossrefs

Row sums give A099371.
Cf. A001019 (column 0), A053540 (column 1), A081139 (column 2), A173187 (column 3), A173000 (column 4).

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 9*T(n-1, k)+T(n-2, k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018

A116176 a(n) = 9^n * n*(n+1).

Original entry on oeis.org

0, 18, 486, 8748, 131220, 1771470, 22320522, 267846264, 3099363912, 34867844010, 383546284110, 4142299868388, 44059007691036, 462619580755878, 4804126415541810, 49413871702715760, 504021491367700752
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 08 2007

Keywords

Crossrefs

Programs

Formula

G.f.: 18*x/(1-9*x)^3. - Vincenzo Librandi, Feb 28 2013
a(n) = 27*a(n-1) - 243*a(n-2) + 729*a(n-3). - Vincenzo Librandi, Feb 28 2013
a(n) = 18*A081139(n+1). - Bruno Berselli, Mar 01 2013
E.g.f.: 9*x*(2 + 9*x)*exp(9*x). - G. C. Greubel, May 11 2019
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = 1 - 8*log(9/8).
Sum_{n>=1} (-1)^(n+1)/a(n) = 10*log(10/9) - 1. (End)

A128803 a(n) = n*(n-1)*9^n.

Original entry on oeis.org

0, 0, 162, 4374, 78732, 1180980, 15943230, 200884698, 2410616376, 27894275208, 313810596090, 3451916556990, 37280698815492, 396531069219324, 4163576226802902, 43237137739876290, 444724845324441840
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^2-n)*9^n: n in [0..25]]; // Vincenzo Librandi, Feb 12 2013
    
  • Magma
    I:=[0,0,162]; [n le 3 select I[n] else 27*Self(n-1)-243*Self(n-2)+729*Self(n-3): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
  • Mathematica
    LinearRecurrence[{27, -243, 729}, {0, 0, 162}, 30] (* or *) CoefficientList[Series[162 x^2/(1 - 9 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)

Formula

From Vincenzo Librandi, Feb 12 2013: (Start)
G.f.: 162*x^2/(1-9*x)^3.
a(n) = 27*a(n-1)-243*a(n-2)+729*a(n-3). (End)
a(n) = 162*A081139(n). - R. J. Mathar, Apr 26 2015
From Amiram Eldar, Jun 26 2025: (Start)
Sum_{n>=2} 1/a(n) = 1/9 - (8/9)*log(9/8).
Sum_{n>=2} (-1)^n/a(n) = (10/9)*log(10/9) - 1/9. (End)

A196221 Binomial(n+10, 10)*9^n.

Original entry on oeis.org

1, 99, 5346, 208494, 6567561, 177324147, 4255779528, 93019181112, 1883638417518, 35789129932842, 644204338791156, 11068601821048044, 182631930047292726, 2908062270753045714, 44867246463046991016, 673008696945704865240, 9842752192830933654135, 140693457815171581056165, 1969708409412402134786310
Offset: 0

Views

Author

Vincenzo Librandi, Oct 13 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n+10, 10)*9^n: n in [0..20]];

Formula

a(n) = C(n+10, 10)*9^n.
G.f. -1 / (9*x-1)^11 . - R. J. Mathar, Oct 13 2011
Previous Showing 11-20 of 21 results. Next