cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A144314 a(n) = 3*n*(6*n + 1).

Original entry on oeis.org

0, 21, 78, 171, 300, 465, 666, 903, 1176, 1485, 1830, 2211, 2628, 3081, 3570, 4095, 4656, 5253, 5886, 6555, 7260, 8001, 8778, 9591, 10440, 11325, 12246, 13203, 14196, 15225, 16290, 17391, 18528, 19701, 20910, 22155, 23436, 24753, 26106, 27495
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 17 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A000217(6*n) = A014105(3*n) = A081266(2*n).
G.f.: 3*x*(7+5*x)/(1-x)^3. - Vincenzo Librandi, Dec 18 2014
From Wesley Ivan Hurt, Dec 16 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
a(n) = 3 * A049453(n). (End)
E.g.f.: 3*exp(x)*x*(7 + 6*x). - Stefano Spezia, Jun 29 2021
From Amiram Eldar, May 11 2025: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/(2*sqrt(3)) - 2*log(2)/3 - log(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/3 + log(2)/3 + log(2+sqrt(3))/sqrt(3) - 2. (End)

A193723 Mirror of the fusion triangle A193722.

Original entry on oeis.org

1, 2, 1, 6, 5, 1, 18, 21, 8, 1, 54, 81, 45, 11, 1, 162, 297, 216, 78, 14, 1, 486, 1053, 945, 450, 120, 17, 1, 1458, 3645, 3888, 2295, 810, 171, 20, 1, 4374, 12393, 15309, 10773, 4725, 1323, 231, 23, 1, 13122, 41553, 58320, 47628, 24948, 8694, 2016, 300, 26, 1
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

A193723 is obtained by reversing the rows of the triangle A193722.
Triangle T(n,k), read by rows, given by [2,1,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 04 2011
From Philippe Deléham, Nov 14 2011: (Start)
Riordan array ((1-x)/(1-3x), x/(1-3x)).
Product A200139*A007318 as infinite lower triangular arrays. (End)

Examples

			First six rows:
    1;
    2,   1;
    6,   5,   1;
   18,  21,   8,   1;
   54,  81,  45,  11,   1;
  162, 297, 216,  78,  14,   1;
		

Crossrefs

Cf. A084938, A193722, A052924 (antidiagonal sums), Diagonals: A000012, A016789, A081266, Columns: A025192, A081038.

Programs

  • Mathematica
    z = 9; a = 1; b = 1; c = 1; d = 2;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193722 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]] (* A193723 *)

Formula

Write w(n,k) for the triangle at A193722. The triangle at A193723 is then given by w(n,n-k).
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,1)=1 and T(1,0)=2. - Philippe Deléham, Oct 05 2011
From Philippe Deléham, Nov 14 2011: (Start)
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for x=-2,-1,0,1,2,3,4,5,6,7,8,9 respectively.
T(n,k) = Sum_{j>=0} T(n-1-j,k-1)*3^j.
G.f.: (1-x)/(1-(3+y)*x). (End)

A158623 Denominator of the reduced fraction A158620(n)/A158621(n).

Original entry on oeis.org

9, 18, 10, 45, 63, 28, 108, 135, 55, 198, 234, 91, 315, 360, 136, 459, 513, 190, 630, 693, 253, 828, 900, 325, 1053, 1134, 406, 1305, 1395, 496, 1584, 1683, 595, 1890, 1998, 703, 2223, 2340, 820, 2583, 2709, 946, 2970, 3105, 1081, 3384, 3528, 1225, 3825
Offset: 2

Views

Author

Jonathan Vos Post, Mar 23 2009

Keywords

Comments

A158620(n) = Product_{k=2..n} (k^3-1). A158621(n) = Product_{k=2..n} (k^3+1). A158622(n) is the numerator of the reduced fraction A158620(n)/A158621(n). A158623(n) is the denominator of the reduced fraction A158620(n)/A158621(n). The reduced fractions are 7/9, 13/18, 7/10, 31/45, 43/63, 19/28, 73/108, 91/135, 37/55, 133/198, ...

Examples

			a(2) = 9 = denominator of (2^3-1)/2^3+1 = 7/9. a(3) = 18 = denominator of ((2^3-1)*(3^3-1))/((2^3+1)*(3^3+1)) = (7 * 26)/ (9 * 28) = 182/252 = 13/18. a(4) = 10 = denominator of ((2^3-1)*(3^3-1)*(4^3-1))/((2^3+1)*(3^3+1)*(4^3+1)) = (7 * 26 * 63)/(9 * 28 * 65) = 11466/16380 = 7/10. a(5) = 45 = denominator of ((2^3-1)(3^3-1)(4^3-1)(5^3-1))/((2^3+1)(3^3+1)(4^3+1)(5^3+1)) = 1421784/2063880 = 31/45.
		

Crossrefs

Programs

Formula

Denominator of (Product_{k=2..n} (k^3-1)) / Product_{k=2..n} (k^3+1) = denominator of Product_{k=2..n} A068601(k)/A001093(k).
A158620(n)/A158621(n) = 2(n^2+n+1)/(3n(n+1)). Conjecture: a(n) = 3a(n-3) - 3a(n-6) + a(n-9), so trisections are A152996, A060544 and 3*A081266. - R. J. Mathar, Mar 27 2009
Empirical g.f.: -x^2*(x^8 - 2*x^5 + 9*x^4 + 18*x^3 + 10*x^2 + 18*x + 9) / ((x-1)^3*(x^2 + x + 1)^3). - Colin Barker, May 09 2013

Extensions

More terms from R. J. Mathar, Mar 27 2009

A306368 a(n) = numerator of (n + 3)*(n + 4)/((n + 1)*(n + 2)).

Original entry on oeis.org

6, 10, 5, 21, 28, 12, 45, 55, 22, 78, 91, 35, 120, 136, 51, 171, 190, 70, 231, 253, 92, 300, 325, 117, 378, 406, 145, 465, 496, 176, 561, 595, 210, 666, 703, 247, 780, 820, 287, 903, 946, 330, 1035, 1081, 376, 1176, 1225, 425, 1326, 1378, 477, 1485, 1540, 532, 1653, 1711, 590
Offset: 0

Views

Author

Peter Bala, Feb 14 2019

Keywords

Comments

If P(x) and Q(x) are coprime integral polynomials such that Q(n) > 0 for n >= 0 then the sequence of numerators of the rational numbers P(n)/Q(n) for n >= 0 and the sequence of denominators of P(n)/Q(n) for n >= 0 are both quasi-polynomial in n. In fact, there exists a purely periodic sequence b(n) such that numerator(P(n)/Q(n)) = P(n)/b(n) and denominator(P(n)/Q(n)) = Q(n)/b(n). Here we take P(n) = (n + 3)*(n + 4) and Q(n) = (n + 1)*(n + 2).

Crossrefs

Programs

  • GAP
    List([0..100],n->NumeratorRat((n+3)*(n+4)/((n+1)*(n+2)))); # Muniru A Asiru, Feb 25 2019
    
  • Maple
    seq((n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)), n = 0..100);
  • Mathematica
    Table[((n+3)(n+4))/((n+1)(n+2)),{n,0,60}]//Numerator (* or *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{6,10,5,21,28,12,45,55,22},60] (* Harvey P. Dale, Mar 28 2020 *)
  • PARI
    a(n) = numerator((n + 3)*(n + 4)/((n + 1)*(n + 2))); \\ Michel Marcus, Feb 26 2019

Formula

O.g.f.: (x^8 + x^7 - 3*x^5 - 2*x^4 + 3*x^3 + 5*x^2 + 10*x + 6)/((1 - x)^3*(x^2 + x + 1)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n >= 9.
a(n) = (n + 3)*(n + 4)/b(n), where (b(n))n>=0 is the purely periodic sequence [2, 2, 6, 2, 2, 6, ...] with period 3.
a(n) = (n + 3)*(n + 4)/gcd((n + 3)*(n + 4), (n + 1)*(n + 2)).
a(3*n) = (3*n + 3)*(3*n + 4)/2 = A081266(n+1).
a(3*n+1) = (3*n + 4)*(3*n + 5)/2 = A060544(n+2).
a(3*n+2) = (n + 2)*(3*n + 5)/2 = A000326(n+2).
Sum_{n>=0} 1/a(n) = 2*log(3) - 2*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022

A198392 a(n) = (6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16 + 1.

Original entry on oeis.org

2, 4, 12, 18, 31, 41, 59, 73, 96, 114, 142, 164, 197, 223, 261, 291, 334, 368, 416, 454, 507, 549, 607, 653, 716, 766, 834, 888, 961, 1019, 1097, 1159, 1242, 1308, 1396, 1466, 1559, 1633, 1731, 1809, 1912, 1994, 2102, 2188, 2301, 2391, 2509, 2603, 2726, 2824, 2952
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2011

Keywords

Comments

For an origin of this sequence, see the triangular spiral illustrated in the Links section.
First bisection gives A117625 (without the initial term).

Crossrefs

Cf. A152832 (by Superseeker).
Cf. sequences related to the triangular spiral: A022266, A022267, A027468, A038764, A045946, A051682, A062708, A062725, A062728, A062741, A064225, A064226, A081266-A081268, A081270-A081272, A081275 [incomplete list].

Programs

  • Magma
    [(6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1: n in [0..50]];
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{2,4,12,18,31},60] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    for(n=0, 50, print1((6*n*(3*n+7)+(2*n+13)*(-1)^n+3)/16+1", "));
    

Formula

G.f.: (2+2*x+4*x^2+2*x^3-x^4)/((1+x)^2*(1-x)^3).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-1) = A168329(n+1).
a(n)+a(n-1) = A102214(n).
a(2n)-a(2n-1) = A016885(n).
a(2n+1)-a(2n) = A016825(n).

A268351 a(n) = 3*n*(9*n - 1)/2.

Original entry on oeis.org

0, 12, 51, 117, 210, 330, 477, 651, 852, 1080, 1335, 1617, 1926, 2262, 2625, 3015, 3432, 3876, 4347, 4845, 5370, 5922, 6501, 7107, 7740, 8400, 9087, 9801, 10542, 11310, 12105, 12927, 13776, 14652, 15555, 16485, 17442, 18426, 19437, 20475, 21540, 22632, 23751, 24897, 26070, 27270
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2016

Keywords

Comments

First trisection of pentagonal numbers (A000326).
More generally, the ordinary generating function for the first trisection of k-gonal numbers is 3*x*(k - 1 + (2*k - 5)*x)/(1 - x)^3.

Crossrefs

Programs

  • Magma
    [3*n*(9*n-1)/2: n in [0..50]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    Table[3 n (9 n - 1)/2, {n, 0, 45}]
    Table[Binomial[9 n, 2]/3, {n, 0, 45}]
    LinearRecurrence[{3, -3, 1}, {0, 12, 51}, 45]
  • PARI
    a(n)=3*n*(9*n-1)/2 \\ Charles R Greathouse IV, Jul 26 2016

Formula

G.f.: 3*x*(4 + 5*x)/(1 - x)^3.
a(n) = binomial(9*n,2)/3.
a(n) = A000326(3*n) = 3*A022266(n).
a(n) = A211538(6*n+2).
a(n) = A001318(6*n-1), with A001318(-1)=0.
a(n) = A188623(9*n-2), with A188623(-2)=0.
Sum_{n>=1} 1/a(n) = 0.132848490245209886617568... = (-Pi*cot(Pi/9) + 5*log(3) + 4*cos(Pi/9)*log(cos(Pi/18)) - 4*cos(2*Pi/9)*log(sin(Pi/9)) - 4*log(sin(2*Pi/9))*sin(Pi/18))/3. [Corrected by Vaclav Kotesovec, Feb 25 2016]
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 3*exp(x)*x*(8 + 9*x)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = A022284(n) - n. (End)

Extensions

Edited by Bruno Berselli, Feb 03 2016

A342719 Array read by ascending antidiagonals: T(k, n) is the sum of the consecutive positive integers from 1 to (n - 1)*k placed along the perimeter of an n-th order perimeter-magic k-gon.

Original entry on oeis.org

21, 36, 45, 55, 78, 78, 78, 120, 136, 120, 105, 171, 210, 210, 171, 136, 231, 300, 325, 300, 231, 171, 300, 406, 465, 465, 406, 300, 210, 378, 528, 630, 666, 630, 528, 378, 253, 465, 666, 820, 903, 903, 820, 666, 465, 300, 561, 820, 1035, 1176, 1225, 1176, 1035, 820, 561
Offset: 3

Views

Author

Stefano Spezia, Mar 19 2021

Keywords

Examples

			The array begins:
k\n|   3    4    5    6    7 ...
---+------------------------
3  |  21   45   78  120  171 ...
4  |  36   78  136  210  300 ...
5  |  55  120  210  325  465 ...
6  |  78  171  300  465  666 ...
7  | 105  231  406  630  903 ...
...
		

Crossrefs

Cf. A014105 (n = 3), A033585 (n = 5), A037270 (1st superdiagonal), A081266 (n = 4), A083374 (1st subdiagonal), A110450 (diagonal), A144312 (n = 6), A144314 (n = 7), A342757, A342758.

Programs

  • Mathematica
    T[k_,n_]:=(n-1)k((n-1)k+1)/2; Table[T[k+3-n,n],{k,3,12},{n,3,k}]//Flatten

Formula

O.g.f.: (x^2 - 3*x^2*y + x*y^2 + 3*x^2*y^2)/((1 - x)^3*(1 - y)^3).
E.g.f.: exp(x+y)*x*(x - x*y + y^2 + x*y^2)/2.
T(k, n) = (n - 1)*k*((n - 1)*k + 1)/2.

A173622 Triangle T(n,m) read by rows: The number of m-Schroeder paths of order n with 2 diagonal steps.

Original entry on oeis.org

1, 6, 21, 30, 180, 546, 140, 1430, 6120, 17710, 630, 10920, 65835, 245700, 695640, 2772, 81396, 690690, 3322704, 11515140, 32212719, 12012, 596904, 7125300, 44170896, 187336380, 619851960, 1721286532, 51480, 4326300, 72624816
Offset: 2

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Comments

The case with 1 diagonal step is A060543.

Examples

			This is the left-lower portion of the array which starts in row n=2, columns m>=1 as:
1, 2, 3, 4, 5, 6,..
6, 21, 45, 78, 120, 171, 231,.. # A081266
30, 180, 546, 1224, 2310, 3900, 6090, 8976,.. # bisection A055112
140, 1430, 6120, 17710, 40950, 81840, 147630, 246820, 389160,.. # 5-section A034827
630, 10920, 65835, 245700, 695640, 1645020, 3426885, 6497400, ...
2772, 81396, 690690, 3322704, 11515140, 32212719, 77481495, ...
12012, 596904, 7125300, 44170896, 187336380, 619851960, ...
		

References

  • Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53 Theorem 2.1.

Formula

T(n,m) = trinomial(m*n+n-2; m*n-2,n-2,2)/(m*n-1) .

A143942 Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in a linear chain of n squares joined at vertices (i.e., joined like <><><>...<>; here <> is a square!); 1 <= k <= 2n.

Original entry on oeis.org

4, 2, 8, 8, 4, 1, 12, 14, 8, 6, 4, 1, 16, 20, 12, 11, 8, 6, 4, 1, 20, 26, 16, 16, 12, 11, 8, 6, 4, 1, 24, 32, 20, 21, 16, 16, 12, 11, 8, 6, 4, 1, 28, 38, 24, 26, 20, 21, 16, 16, 12, 11, 8, 6, 4, 1, 32, 44, 28, 31, 24, 26, 20, 21, 16, 16, 12, 11, 8, 6, 4, 1, 36, 50, 32, 36, 28, 31, 24, 26
Offset: 1

Views

Author

Emeric Deutsch, Sep 06 2008

Keywords

Comments

Row n has 2n entries.
The entries in row n are the coefficients of the Wiener polynomial of the linear chain of n squares.
Sum of entries in row n = 3n(3n+1)/2 = A081266(n).
Sum_{k=1..n} k*T(n,k) = the Wiener index of a linear chain of n squares joined at vertices (like <><><>...) = A143943(n).

Examples

			T(2,1)=8 because the chain of 2 squares (<><>) has 8 edges.
Triangle starts:
   4,  2;
   8,  8,  4,  1;
  12, 14,  8,  6,  4,  1;
  16, 20, 12, 11,  8,  6,  4,  1;
  20, 26, 16, 16, 12, 11,  8,  6,  4,  1;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if 2*n < k then 0 elif k = 1 then 4*n elif k = 2 then 6*n-4 elif `mod`(k,2)=1 then 4*n-2*k+2 elif `mod`(k,2)=0 then 5*n-(5/2)*k+1 else 0 end if end proc: for n to 10 do seq(T(n,k),k=1..2*n) end do; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Which[2n < k, 0, k == 1, 4n, k == 2, 6n - 4, OddQ[k], 4n - 2k + 2, EvenQ[k], 5n - (5/2) k + 1, True, 0];
    Table[T[n, k], {n, 1, 10}, {k, 1, 2n}] // Flatten (* Jean-François Alcover, Aug 23 2024, after Maple program *)

Formula

T(n,1) = 4n; T(n,2) = 6n-4; T(n,2p+1) = 4(n-p); T(n,2p) = 5(n-p)+1.
G.f. = G(q,z) = qz/(4+2q+4qz-q^3*z)/((1-q^2*z)*(1-z)^2).

A206294 Riordan array (1, x/(1-x)^3).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 05 2012

Keywords

Comments

The convolution triangle of the triangular numbers A000217. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
		

Crossrefs

Cf. Columns: A000007, A000217 (triangular numbers), A000389, A000581, A001288, A010967..(+3)..A011000, A017714..(+3)..A017762.
Row sums are A052529.
Cf. A127893.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
  • Mathematica
    Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    {T(n,k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k),n-k)}
    
  • PARI
    {T(n,k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)),n,x),k,y)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Triangle T(n,k), read by rows, given by (0, 3, -1, 2/3, -1/6, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
T(n,0) = 0^n, T(n,k) = C(n-1+2k, n-k) for k > 0.
T(n,n) = 1, T(k+1,k) = 3*k = A008585(k), T(k+2,k) = A081266(k).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A052529(n), A052910(n) for x = 0, 1, 2 respectively.
G.f.: (1-x)^3/((1-x)^3-y*x).
Previous Showing 11-20 of 21 results. Next