A094494
Primes p such that 2^j+p^j are primes for j=0,2,4,8.
Original entry on oeis.org
6203, 16067, 72367, 105653, 179743, 323903, 1005467, 1040113, 1276243, 1331527, 1582447, 1838297, 1894873, 2202433, 2314603, 2366993, 2369033, 2416943, 2533627, 2698697, 2804437, 2806613, 2823277, 2826337, 2851867, 2888693, 3911783, 4217617, 4432837, 4475473
Offset: 1
Conditions mean 2,p^2+4,16+p^4,256+p^8 are all primes.
-
p:= 2: count:= 0: Res:= NULL:
while count < 30 do
p:= nextprime(p);
if isprime(4+p^2) and isprime(16+p^4) and isprime(256+p^8) then
count:= count+1;
Res:= Res, p;
fi
od:
Res; # Robert Israel, Jul 17 2018
-
{ta=Table[0, {100}], u=1}; Do[s0=2;s2=4+Prime[j]^2;s2=16+Prime[j]^4;s8=256+Prime[j]^8 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
Select[Prime[Range[210000]],AllTrue[Table[2^j+#^j,{j,{0,2,4,8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 13 2017 *)
A082102
Primes of the form 2^(k-1) + 3^k.
Original entry on oeis.org
11, 31, 89, 761, 2251, 6689, 59561, 14365291, 10461401779, 282437925089, 150094669656737489, 239299329512092506300739, 2153693964201457673153371, 107752636643058216783050887908587014548761
Offset: 1
-
Do[s=2^(w-1)+3^w; If[PrimeQ[s], Print[s]], {w, 1, 2000}]
Select[Table[2^(n-1)+3^n,{n,100}],PrimeQ] (* Harvey P. Dale, Feb 09 2016 *)
-
lista(kmax) = {my(p); for(k = 1, kmax, p = 2^(k-1) + 3^k; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 16 2024
A093988
Numbers k such that 2^k + 3*k is prime.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 35, 45, 47, 57, 87, 183, 325, 367, 447, 809, 1157, 2789, 5775, 14829, 20687, 46463, 62491, 92147, 128745
Offset: 1
-
A093988:=n->`if`(isprime(2^n+3*n), n, NULL): seq(A093988(n), n=1..10^3); # Wesley Ivan Hurt, Jan 21 2017
-
Do[ If[ PrimeQ[2^n + 3n], Print[n]], {n, 1, 5000, 2}]
-
isok(n) = isprime(2^n + 3*n); \\ Michel Marcus, Jan 21 2017
-
ABC2 2^$a+3*$a
a: from 1 to 1000 // Jinyuan Wang, Feb 03 2020
A094482
Primes of form 2^j + 137^j.
Original entry on oeis.org
2, 139, 18773, 124097929967680577
Offset: 1
j=0: p=1+1=2; j=1: p=2+59=61; j=2: p=4+18769=18773; j=8: p=256+37^8=124097929967680577; the j exponents are powers of 2.
A161470
Primes of the form 3^k+2^k+k^3-k^2.
Original entry on oeis.org
5, 17, 53, 2609, 1604543, 7625731721669, 67585198634826967968486182915129003
Offset: 1
-
[ a: n in [1..450] | IsPrime(a) where a is 3^n+2^n+n^3-n^2] // Vincenzo Librandi, Nov 30 2010
-
A161470 = {}; Do[If[PrimeQ[p = (3^n + 2^n) + (n^3 - n^2)], AppendTo[A161470, p]], {n, 6!}]; A161470 (* Orlovsky *)
(* Alternate: *) Select[Table[3^k + 2^k + k^3 - k^2, {k, 2000}], PrimeQ] (* Harvey P. Dale, Dec 12 2010 *)
A165259
Sum of odd powers of 4 and 9 divided by 13.
Original entry on oeis.org
1, 61, 4621, 369181, 29821741, 2414250301, 195533302861, 15837861987421, 1282861452271981, 103911691734684541, 8416845656119913101, 681764476155480405661, 55222922216750191970221
Offset: 0
-
[(4^(2*n+1)+9^(2*n+1))/13: n in [0..30]]; // G. C. Greubel, Mar 11 2023
-
Table[(4^n+9^n)/13,{n,1,31,2}] (* or *) LinearRecurrence[{97,-1296},{1,61},20] (* Harvey P. Dale, Jun 23 2013 *)
-
a(n)=(4^(2*n+1)+9^(2*n+1))/13
-
[(4^(2*n+1)+9^(2*n+1))/13 for n in range(31)] # G. C. Greubel, Mar 11 2023
A094477
Primes of form 2^n + 37^n.
Original entry on oeis.org
2, 1373, 1874177, 23169162752708970943114627382699355445603465075569066753527132965271355336698663708393617779709970177
Offset: 1
No more terms for n < 1000, so the next term will be too large to include. -
Hugo Pfoertner, Aug 17 2004
A094486
Primes of form 2^j + 223^j.
Original entry on oeis.org
2, 2472973457, 6115597639891380737
Offset: 1
The relevant exponents are powers of 2: 0,4,8,128. a(4) = 2^128 + 223^128 = 382844.....1067137 (a prime with 301 decimal digits).
A094487
Primes p such that 2^j+p^j are primes for j=0,1,2,4.
Original entry on oeis.org
3, 5, 17, 4517, 5477, 5867, 7457, 8537, 13877, 16067, 22697, 27917, 56477, 59357, 90437, 97577, 101747, 118247, 122207, 124247, 135467, 139457, 140417, 153947, 208697, 247067, 267677, 306947, 419927, 470087, 489407, 520547, 529577, 540347
Offset: 1
For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=16+p^4.
-
{ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s4=16+Prime[j]^4; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s4], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
Select[Prime[Range[45000]],AllTrue[{2+#,4+#^2,16+#^4},PrimeQ]&] (* Harvey P. Dale, Sep 18 2022 *)
A094489
Primes p such that 2^j+p^j are primes for j=0,1,4,32.
Original entry on oeis.org
59, 5417, 19079, 33827, 136949, 181871, 242519, 284897, 421607, 452537, 552401, 598187, 962681, 1068251, 1081979, 1163231, 1317761, 1760279, 1801361, 1891499, 1895081, 1919459, 2056907, 2131601, 2427461, 2557601, 2579177, 2826737
Offset: 1
For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^4+16 and prime=2^32+p^32.
-
{ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s8=2^32+Prime[j]^32; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
Select[Prime[Range[210000]],AllTrue[{2+#,16+#^4,2^32+#^32},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 13 2015 *)
Comments