cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A094494 Primes p such that 2^j+p^j are primes for j=0,2,4,8.

Original entry on oeis.org

6203, 16067, 72367, 105653, 179743, 323903, 1005467, 1040113, 1276243, 1331527, 1582447, 1838297, 1894873, 2202433, 2314603, 2366993, 2369033, 2416943, 2533627, 2698697, 2804437, 2806613, 2823277, 2826337, 2851867, 2888693, 3911783, 4217617, 4432837, 4475473
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

Primes of 2^j+p^j form are a generalization of Fermat-primes. 1^j is replaced by p^j. This is strongly supported by the observation that corresponding j-exponents are apparently powers of 2 like for the 5 known Fermat primes. See A094473-A094491.

Examples

			Conditions mean 2,p^2+4,16+p^4,256+p^8 are all primes.
		

Crossrefs

Programs

  • Maple
    p:= 2: count:= 0: Res:= NULL:
    while count < 30 do
      p:= nextprime(p);
      if isprime(4+p^2) and isprime(16+p^4) and isprime(256+p^8) then
        count:= count+1;
        Res:= Res, p;
      fi
    od:
    Res; # Robert Israel, Jul 17 2018
  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s2=4+Prime[j]^2;s2=16+Prime[j]^4;s8=256+Prime[j]^8 If[PrimeQ[s0]&&PrimeQ[s2]&&PrimeQ[s4]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[210000]],AllTrue[Table[2^j+#^j,{j,{0,2,4,8}}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 13 2017 *)

A082102 Primes of the form 2^(k-1) + 3^k.

Original entry on oeis.org

11, 31, 89, 761, 2251, 6689, 59561, 14365291, 10461401779, 282437925089, 150094669656737489, 239299329512092506300739, 2153693964201457673153371, 107752636643058216783050887908587014548761
Offset: 1

Views

Author

Labos Elemer, Apr 14 2003

Keywords

Examples

			89 = 2^3 + 3^4.
		

Crossrefs

Programs

  • Mathematica
    Do[s=2^(w-1)+3^w; If[PrimeQ[s], Print[s]], {w, 1, 2000}]
    Select[Table[2^(n-1)+3^n,{n,100}],PrimeQ] (* Harvey P. Dale, Feb 09 2016 *)
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = 2^(k-1) + 3^k; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 16 2024

Formula

a(n) = 2^(A082103(n)-1) + 3^A082103(n). - Amiram Eldar, Aug 16 2024

A093988 Numbers k such that 2^k + 3*k is prime.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 35, 45, 47, 57, 87, 183, 325, 367, 447, 809, 1157, 2789, 5775, 14829, 20687, 46463, 62491, 92147, 128745
Offset: 1

Views

Author

Robert G. Wilson v, May 25 2004

Keywords

Comments

a(22) > 31410. - Jinyuan Wang, Feb 03 2020

Crossrefs

Programs

  • Maple
    A093988:=n->`if`(isprime(2^n+3*n), n, NULL): seq(A093988(n), n=1..10^3); # Wesley Ivan Hurt, Jan 21 2017
  • Mathematica
    Do[ If[ PrimeQ[2^n + 3n], Print[n]], {n, 1, 5000, 2}]
  • PARI
    isok(n) = isprime(2^n + 3*n); \\ Michel Marcus, Jan 21 2017
    
  • PFGW
    ABC2 2^$a+3*$a
    a: from 1 to 1000 // Jinyuan Wang, Feb 03 2020

Extensions

a(19)-a(21) from Ryan Propper, Jul 05 2005
a(22)-a(23) from Michael S. Branicky, May 19 2023
a(24)-a(25) from Michael S. Branicky, Jul 24 2024

A094482 Primes of form 2^j + 137^j.

Original entry on oeis.org

2, 139, 18773, 124097929967680577
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

The number j must be zero or a power of 2. Checked j being powers of two through 2^20. Thus a(5) > 10^4400000. Primes of this magnitude are rare (about 1 in 10.3 million), so chance of finding one is remote with today's computer algorithms and speeds. - Robert Price, Apr 29 2013

Examples

			j=0: p=1+1=2; j=1: p=2+59=61; j=2: p=4+18769=18773; j=8: p=256+37^8=124097929967680577; the j exponents are powers of 2.
		

Crossrefs

A161470 Primes of the form 3^k+2^k+k^3-k^2.

Original entry on oeis.org

5, 17, 53, 2609, 1604543, 7625731721669, 67585198634826967968486182915129003
Offset: 1

Views

Author

Keywords

Comments

The associated k are 1, 2, 3, 7, 13, 27, 73, 994, 1129, ... - R. J. Mathar, Jun 12 2009
The next term has 475 digits. - Harvey P. Dale, Dec 12 2010

Crossrefs

Programs

  • Magma
    [ a: n in [1..450] | IsPrime(a) where a is 3^n+2^n+n^3-n^2] // Vincenzo Librandi, Nov 30 2010
  • Mathematica
    A161470 = {}; Do[If[PrimeQ[p = (3^n + 2^n) + (n^3 - n^2)], AppendTo[A161470, p]], {n, 6!}]; A161470 (* Orlovsky *)
    (* Alternate: *) Select[Table[3^k + 2^k + k^3 - k^2, {k, 2000}], PrimeQ] (* Harvey P. Dale, Dec 12 2010 *)

Extensions

Definition simplified by R. J. Mathar, Jun 12 2009

A165259 Sum of odd powers of 4 and 9 divided by 13.

Original entry on oeis.org

1, 61, 4621, 369181, 29821741, 2414250301, 195533302861, 15837861987421, 1282861452271981, 103911691734684541, 8416845656119913101, 681764476155480405661, 55222922216750191970221
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 11 2009

Keywords

Crossrefs

Programs

  • Magma
    [(4^(2*n+1)+9^(2*n+1))/13: n in [0..30]]; // G. C. Greubel, Mar 11 2023
    
  • Mathematica
    Table[(4^n+9^n)/13,{n,1,31,2}] (* or *) LinearRecurrence[{97,-1296},{1,61},20] (* Harvey P. Dale, Jun 23 2013 *)
  • PARI
    a(n)=(4^(2*n+1)+9^(2*n+1))/13
    
  • SageMath
    [(4^(2*n+1)+9^(2*n+1))/13 for n in range(31)] # G. C. Greubel, Mar 11 2023

Formula

G.f.: (1-36*x)/((1-16*x)*(1-81*x))
a(n) = 97*a(n-1) - 1296*a(n-2). - Harvey P. Dale, Jun 23 2013
E.g.f.: (1/13)*(4*exp(16*x) + 9*exp(81*x)). - G. C. Greubel, Mar 11 2023

A094477 Primes of form 2^n + 37^n.

Original entry on oeis.org

2, 1373, 1874177, 23169162752708970943114627382699355445603465075569066753527132965271355336698663708393617779709970177
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

The number n must be zero or a power of 2. Checked n being powers of two through 2^20. Thus a(5) > 10^3200000. Primes of this magnitude are rare (about 1 in 7.5 million), so chance of finding one is remote with today's computer algorithms and speeds. - Robert Price, Apr 29 2013

Crossrefs

Extensions

No more terms for n < 1000, so the next term will be too large to include. - Hugo Pfoertner, Aug 17 2004

A094486 Primes of form 2^j + 223^j.

Original entry on oeis.org

2, 2472973457, 6115597639891380737
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Comments

Expression 2^j + q^j below q = prime <= prime[130] provided always prime at j=0; or for j=1 if q is a lesser-twin-prime; or more rarely 3 or 4 primes [four ones at q=3,5,17,37,59,137,179,223,461]; never found 5 or more relevant primes and the corresponding exponents proved to be powers of 2. Formal proofs of observations wanted.
See comment by Michael Somos, Aug 27 2004 for proof that j must be zero or a power of 2. - Robert Price, Apr 30 2013
Since the number j must be zero or a power of 2, checked j being powers of two through 2^19. Thus a(5) > 10^2400000. Primes of this magnitude are rare (about 1 in 5.6 million), so chance of finding one is remote with today's computer algorithms and speeds. - Robert Price, Apr 30 2013

Examples

			The relevant exponents are powers of 2: 0,4,8,128. a(4) = 2^128 + 223^128 = 382844.....1067137 (a prime with 301 decimal digits).
		

Crossrefs

Extensions

Corrected by T. D. Noe, Nov 15 2006

A094487 Primes p such that 2^j+p^j are primes for j=0,1,2,4.

Original entry on oeis.org

3, 5, 17, 4517, 5477, 5867, 7457, 8537, 13877, 16067, 22697, 27917, 56477, 59357, 90437, 97577, 101747, 118247, 122207, 124247, 135467, 139457, 140417, 153947, 208697, 247067, 267677, 306947, 419927, 470087, 489407, 520547, 529577, 540347
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Examples

			For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^2+4 and prime=16+p^4.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s4=16+Prime[j]^4; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s4], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[45000]],AllTrue[{2+#,4+#^2,16+#^4},PrimeQ]&] (* Harvey P. Dale, Sep 18 2022 *)

A094489 Primes p such that 2^j+p^j are primes for j=0,1,4,32.

Original entry on oeis.org

59, 5417, 19079, 33827, 136949, 181871, 242519, 284897, 421607, 452537, 552401, 598187, 962681, 1068251, 1081979, 1163231, 1317761, 1760279, 1801361, 1891499, 1895081, 1919459, 2056907, 2131601, 2427461, 2557601, 2579177, 2826737
Offset: 1

Views

Author

Labos Elemer, Jun 01 2004

Keywords

Examples

			For j=0 1+1=2 is prime; also terms should be lesser-twin-primes
because of p^1+2^1=p+2=prime; 3rd and 4th conditions are as
follows: prime=p^4+16 and prime=2^32+p^32.
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s0=2;s1=Prime[j]+2;s2=4+Prime[j]^2;s8=2^32+Prime[j]^32; If[PrimeQ[s0]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s8], Print[{j, Prime[j]}];ta[[u]]=Prime[j];u=u+1], {j, 1, 1000000}]
    Select[Prime[Range[210000]],AllTrue[{2+#,16+#^4,2^32+#^32},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 13 2015 *)
Previous Showing 11-20 of 39 results. Next