cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A335851 Numbers that are powerful in Gaussian integers.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 25, 27, 32, 36, 49, 50, 54, 64, 72, 81, 98, 100, 108, 121, 125, 128, 144, 162, 169, 196, 200, 216, 225, 242, 243, 250, 256, 288, 289, 324, 338, 343, 361, 392, 400, 432, 441, 450, 484, 486, 500, 512, 529, 576, 578, 625, 648, 675, 676, 686
Offset: 1

Views

Author

Amiram Eldar, Jun 26 2020

Keywords

Comments

Numbers all of whose prime factors in Gaussian integers have multiplicity larger than 1.
The even powerful numbers divided by 4. - Amiram Eldar, May 28 2023

Examples

			2 is a term since 2 = -i * (1 + i)^2 in the ring of Gaussian integers. -i is a unit, and the multiplicity of its only Gaussian prime factor, 1 + i, is 2.
		

Crossrefs

Disjoint union of A001694 and 2 * A062739.
Cf. A082695.

Programs

  • Mathematica
    gaussPowerQ[n_] := AllTrue[FactorInteger[n, GaussianIntegers -> True], Abs[First[#]] == 1 || Last[#] > 1 &]; Select[Range[1000], gaussPowerQ]

Formula

Sum_{n>=1} 1/a(n) = (4/3) * Sum_{n>=1} 1/A001694(n) = 4*zeta(2)*zeta(3)/(3*zeta(6)) = (4/3) * A082695 = 2.591461...

A049200 Euler totient function phi applied to the n-th squarefree number.

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 12, 28, 8, 30, 20, 16, 24, 36, 18, 24, 40, 12, 42, 22, 46, 32, 52, 40, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 88, 72, 60, 46, 72, 96, 100, 32, 102, 48, 52, 106, 108, 40, 72
Offset: 1

Views

Author

Keywords

Examples

			The 12th squarefree number is 17 and phi(17) is 16, so a(12)=16.
		

Crossrefs

Programs

  • Haskell
    a049200 1 = 1
    a049200 n = product $ map (subtract 1) $ a265668_row n
    -- Reinhard Zumkeller, Dec 13 2015
  • Magma
    [EulerPhi(n): n in [1..300] | IsSquarefree(n)]; // Vincenzo Librandi, Jul 13 2015
    
  • Maple
    map(numtheory:-phi,select(numtheory:-issqrfree, [$1..1000])); # Robert Israel, Jul 12 2015
  • Mathematica
    EulerPhi/@Select[Range[200],SquareFreeQ] (* Harvey P. Dale, Jan 13 2015 *)
  • PARI
    lista(nn) = {for(n=1, nn, if (issquarefree(n), print1(eulerphi(n), ", ")));} \\ Michel Marcus, Jul 12 2015
    

Formula

a(n) = A000010(A005117(n)).
{phi(x) ; abs(mu(x)) = 1}.
a(n) = Product_{k = 1..A001221(n)} (A265668(n,k) + 1). - Reinhard Zumkeller, Dec 13 2015
Sum_{n>=1} 1/(A005117(n)*a(n)) = A082695. - Amiram Eldar, Oct 14 2020
Lim_{n->oo} Sum_{k=1..n} 1/a(k) - log(a(n)) = A083343 (Ward, 1927). - Amiram Eldar, Mar 05 2021
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)^2/2) * Product_{p prime} (1 - 2/p^2 + 1/p^3) = A013661^2 * A065464 / 2 = 0.57938048727453660946... . - Amiram Eldar, Oct 09 2023

A183093 a(n) = number of divisors d of n such that d > 1 and if d = Product_(i) (p_i^e_i) then e_i = 1 for at least one i.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 3, 1, 1, 4, 1, 4, 3, 3, 1, 5, 1, 3, 1, 4, 1, 7, 1, 1, 3, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 4, 4, 3, 1, 6, 1, 4, 3, 4, 1, 5, 3, 5, 3, 3, 1, 10, 1, 3, 4, 1, 3, 7, 1, 4, 3, 7, 1, 6, 1, 3, 4, 4, 3, 7, 1, 6, 1, 3, 1, 10, 3, 3, 3, 5, 1, 10, 3, 4, 3, 3, 3, 7, 1, 4, 4, 5
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = number of non-powerful divisors d of n where powerful numbers are numbers of the form A001694(m) for m >= 2.
Sequence is not the same as A183096: a(72) = 6, A183096(72) = 7.

Examples

			For n = 12, set of such divisors is {2, 3, 6, 12}; a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    nonpowQ[n_] := Min[FactorInteger[n][[;;, 2]]] == 1; a[n_] := DivisorSum[n, 1 &, # > 1 && nonpowQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d > 1 && vecmin(factor(d)[, 2]) == 1); \\ Amiram Eldar, Jan 30 2025
  • Scheme
    (define (A183093 n) (- (A000005 n) (A005361 n))) ;; Antti Karttunen, Nov 23 2017
    

Formula

a(n) = A000005(n) - A005361(n) = A183095(n) - 1.
a(1) = 0, a(p) = 1, a(pq) = 3, a(pq...z) = 2^k - 1, a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(2)*zeta(3)/zeta(6) - 1), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 30 2025

Extensions

Name corrected by Amiram Eldar, Jan 30 2025

A325240 Numbers whose minimum prime exponent is 2.

Original entry on oeis.org

4, 9, 25, 36, 49, 72, 100, 108, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 500, 529, 576, 675, 676, 784, 800, 841, 900, 961, 968, 972, 1089, 1125, 1152, 1156, 1225, 1323, 1352, 1369, 1372, 1444, 1521, 1568, 1600, 1681, 1764, 1800
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

Or barely powerful numbers, a subset of powerful numbers A001694.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose minimum multiplicity is 2 (counted by A244515).
Powerful numbers (A001694) that are not cubefull (A036966). - Amiram Eldar, Jan 30 2023

Examples

			The sequence of terms together with their prime indices begins:
    4: {1,1}
    9: {2,2}
   25: {3,3}
   36: {1,1,2,2}
   49: {4,4}
   72: {1,1,1,2,2}
  100: {1,1,3,3}
  108: {1,1,2,2,2}
  121: {5,5}
  144: {1,1,1,1,2,2}
  169: {6,6}
  196: {1,1,4,4}
  200: {1,1,1,3,3}
  225: {2,2,3,3}
  288: {1,1,1,1,1,2,2}
  289: {7,7}
  324: {1,1,2,2,2,2}
  361: {8,8}
  392: {1,1,1,4,4}
  400: {1,1,1,1,3,3}
		

Crossrefs

Positions of 2's in A051904.
Maximum instead of minimum gives A067259.

Programs

  • Mathematica
    Select[Range[1000],Min@@FactorInteger[#][[All,2]]==2&]
  • PARI
    is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) == 2; } \\ Amiram Eldar, Jan 30 2023
    
  • Python
    from math import isqrt, gcd
    from sympy import integer_nthroot, factorint, mobius
    def A325240(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x,3)[0])-l
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c += integer_nthroot(z//y**4,3)[0]
            return c
        return bisection(f,n,n**2) # Chai Wah Wu, Oct 02 2024

Formula

Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Product_{p prime} (1 + 1/(p^2*(p-1))) = A082695 - A065483 = 0.6038122832... . - Amiram Eldar, Jan 30 2023

A361132 Multiplicative with a(p^e) = e^4, p prime and e > 0.

Original entry on oeis.org

1, 1, 1, 16, 1, 1, 1, 81, 16, 1, 1, 16, 1, 1, 1, 256, 1, 16, 1, 16, 1, 1, 1, 81, 16, 1, 81, 16, 1, 1, 1, 625, 1, 1, 1, 256, 1, 1, 1, 81, 1, 1, 1, 16, 16, 1, 1, 256, 16, 16, 1, 16, 1, 81, 1, 81, 1, 1, 1, 16, 1, 1, 16, 1296, 1, 1, 1, 16, 1, 1, 1, 1296, 1, 1, 16, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023, following a suggestion from Amiram Eldar

Keywords

Comments

In general, if the function is multiplicative with a(p^e) = e^k, where k>=1, then Sum_{m=1..n} a(m) ~ c(k) * n, where c(k) = Product_{primes p} (1 + PolyLog(-k, 1/p)) * (1 - 1/p).
Equivalently, c(k) = Product_{primes p} (1 + Sum_{j>=2} (j^k - (j-1)^k) / p^j).
Sum_{m=1..n} A005361(m)^k ~ c(k) * n.
Table of logarithms of the first twenty constants c(k):
log(c1) = 0.6645400902595784780106197346845697376257107319484837534113838...
log(c2) = 2.1027190979191945200514651557327047986978773488049101019457040...
log(c3) = 4.6968549904993458045898305766669061238379561861949323835425304...
log(c4) = 8.6865032221694100694964858752580123427478996289429265630701524...
log(c5) = 14.2913129298819954890384122051888143114132125173972994127345117...
log(c6) = 21.8135511355940060754244319875442802379763506456537810297977335...
log(c7) = 31.6936244245134941047326145621097555406387768809071583785926496...
log(c8) = 44.5357450879229051636129496942971942282070021854681649075237793...
log(c9) = 61.1279313139359633940353674601273793850149492879803908371116076...
log(c10) = 82.5520903493060704390063479960346732401820956158379186266389560...
log(c11) = 110.2954981238150788264027780431082219466660734768697563026966486...
log(c12) = 146.3390378386537094475359791093275236623437203145309460650602987...
log(c13) = 193.3102629498150337396691694808577709247583271151043344733643302...
log(c14) = 254.7562108044458078036208253682699240853829328072028848109791635...
log(c15) = 335.5155584889434205169760027607421364026263435517505529418223175...
log(c16) = 442.1708823748701851244490135727342670822854621013078138839028927...
log(c17) = 583.6971600757633563987486782501478518757572163549653222049269791...
log(c18) = 772.3363960260522276224001927946529683262139600086441840227950538...
log(c19) = 1024.7789861796186438478485897805332932014500908873437888887485298...
log(c20) = 1363.8429394936892771815120584792965902670785987496833459129791344...
Conjecture: log(log(c(k)))/k converges to a constant (around 0.315).

Crossrefs

Programs

  • Mathematica
    g[p_, e_] := e^4; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 4*X + 21*X^2 + X^3 + 6*X^4 - X^5)/(1-X)^5)[n], ", "))

Formula

a(n) = A005361(n)^4.
Dirichlet g.f.: Product_{primes p} (1 + p^s*(p^(3*s) + 11*p^(2*s) + 11*p^s + 1) / (p^s - 1)^5).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{primes p} (1 + (15*p^3 + 5*p^2 + 5*p - 1) / (p*(p-1)^4)) = 5922.43654748315227690838901234893132297258444672...

A368039 The product of exponents of prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 4, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 6, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 4, 3, 6, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 8, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 4, 3, 2, 3, 6, 4, 2, 6, 2, 2, 4, 2, 9, 2, 5, 4, 2
Offset: 1

Views

Author

Amiram Eldar, Dec 09 2023

Keywords

Comments

The terms of A005361 that are larger than 1, since A005361(k) = 1 if and only if k is squarefree (A005117).

Crossrefs

Programs

  • Mathematica
    Select[Table[Times @@ FactorInteger[n][[;;, 2]], {n, 1, 250}], # > 1 &]
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p > 1, print1(p, ", ")));}

Formula

a(n) = A005361(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = ((zeta(2)*zeta(3)/zeta(6)) - 1/zeta(2))/(1-1/zeta(2)) = (A082695 - A059956)/A229099 = 3.406686208821... .

A045972 a(1)=9; if n = Product p_i^e_i, n > 1, then a(n) = Product p_{i+2}^{e_i+1}.

Original entry on oeis.org

9, 25, 49, 125, 121, 1225, 169, 625, 343, 3025, 289, 6125, 361, 4225, 5929, 3125, 529, 8575, 841, 15125, 8281, 7225, 961, 30625, 1331, 9025, 2401, 21125, 1369, 148225, 1681, 15625, 14161, 13225, 20449, 42875, 1849, 21025, 17689, 75625, 2209, 207025
Offset: 1

Views

Author

Keywords

References

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := NextPrime[p, 2]^(e + 1); a[1] = 9; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2023 *)

Formula

Sum_{n>=1} 1/a(n) = (4/7) * (zeta(2)*zeta(3)/zeta(6)) - 8/9 = 0.221737646437... . - Amiram Eldar, Sep 19 2023

Extensions

More terms from David W. Wilson

A076511 Numerator of cototient(n)/totient(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 7, 1, 1, 2, 1, 3, 3, 6, 1, 2, 1, 7, 1, 4, 1, 11, 1, 1, 13, 9, 11, 2, 1, 10, 5, 3, 1, 5, 1, 6, 7, 12, 1, 2, 1, 3, 19, 7, 1, 2, 3, 4, 7, 15, 1, 11, 1, 16, 3, 1, 17, 23, 1, 9, 25, 23, 1, 2, 1, 19, 7, 10, 17, 9, 1, 3, 1, 21, 1, 5, 21, 22, 31, 6, 1, 11, 19, 12, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 15 2002

Keywords

Crossrefs

Cf. A076512 (denominators), A000010, A009195, A051953, A082695, A109395.

Programs

  • Mathematica
    Table[Numerator[n/EulerPhi[n] - 1], {n, 1, 100}] (* Amiram Eldar, Nov 21 2022 *)
  • PARI
    A076511(n) = numerator((n-eulerphi(n))/eulerphi(n)); \\ Antti Karttunen, Sep 07 2018

Formula

a(n) = A051953(n)/A009195(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A076512(k) = zeta(2)*zeta(3)/zeta(6) - 1 = A082695 - 1 = 0.943596... . Amiram Eldar, Nov 21 2022

A183095 a(n) = number of divisors d of n that are either 1 or of the form Product_(i) (p_i^e_i) where e_i = 1 for at least one i.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 5, 2, 4, 4, 2, 2, 5, 2, 5, 4, 4, 2, 6, 2, 4, 2, 5, 2, 8, 2, 2, 4, 4, 4, 6, 2, 4, 4, 6, 2, 8, 2, 5, 5, 4, 2, 7, 2, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 11, 2, 4, 5, 2, 4, 8, 2, 5, 4, 8, 2, 7, 2, 4, 5, 5, 4, 8, 2, 7, 2, 4, 2, 11, 4, 4, 4, 6, 2, 11, 4, 5, 4, 4, 4, 8, 2, 5, 5, 6
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Comments

a(n) = number of non-powerful divisors d of n where powerful numbers are numbers of the form A001694(m) for m >= 1.

Examples

			For n = 12, set of such divisors is {1, 2, 3, 6, 12}; a(12) = 5.
		

Crossrefs

Programs

  • Mathematica
    nonpowQ[n_] := Min[FactorInteger[n][[;;, 2]]] == 1;a[n_] := DivisorSum[n, 1 &, nonpowQ[#] &]; Array[a, 100] (* Amiram Eldar, Jan 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, d == 1 || vecmin(factor(d)[, 2]) == 1); \\ Amiram Eldar, Jan 30 2025

Formula

a(n) = A000005(n) - A183094(n) = A183093(n) + 1.
a(1) = 1, a(p) = 2, a(pq) = 4, a(pq...z) = 2^k, a(p^k) = 2, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma - zeta(2)*zeta(3)/zeta(6)), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 30 2025

Extensions

Name corrected by Amiram Eldar, Jan 30 2025

A323332 The Dedekind psi function values of the powerful numbers, A001615(A001694(n)).

Original entry on oeis.org

1, 6, 12, 12, 24, 30, 36, 48, 72, 56, 96, 144, 108, 180, 216, 132, 150, 192, 288, 182, 336, 360, 432, 360, 324, 384, 576, 306, 648, 392, 380, 672, 720, 864, 672, 792, 900, 768, 552, 1152, 750, 1296, 1080, 1092, 972, 1344, 1440, 870, 1728, 2160, 992, 1584
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

The sum of the reciprocals of all the terms of this sequence is Pi^2/6 (A013661).
The asymptotic density of a sequence S that possesses the property that an integer k is a term if and only if its powerful part, A057521(k) is a term, is (1/zeta(2)) * Sum_{n>=1, A001694(n) is a term of S} 1/a(n). Examples for such sequences are the e-perfect numbers (A054979), the exponential abundant numbers (A129575), and other sequences listed in the Crossrefs section. - Amiram Eldar, May 06 2025

Crossrefs

Sequences whose density can be calculated using this sequence: A054979, A129575, A307958, A308053, A321147, A322858, A323310, A328135, A339936, A340109, A364990, A382061, A383693, A383695, A383697.

Programs

  • Mathematica
    psi[1]=1; psi[n_] := n * Times@@(1+1/Transpose[FactorInteger[n]][[1]]); psi /@ Join[{1}, Select[Range@ 1200, Min@ FactorInteger[#][[All, 2]] > 1 &]] (* after T. D. Noe at A001615 and Harvey P. Dale at A001694 *)
  • Python
    from math import isqrt, prod
    from sympy import mobius, integer_nthroot, primefactors
    def A323332(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        a = primefactors(m:=bisection(f,n,n))
        return m*prod(p+1 for p in a)//prod(a) # Chai Wah Wu, Sep 14 2024
Previous Showing 21-30 of 56 results. Next