cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A015519 a(n) = 2*a(n-1) + 7*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 11, 36, 149, 550, 2143, 8136, 31273, 119498, 457907, 1752300, 6709949, 25685998, 98341639, 376485264, 1441362001, 5518120850, 21125775707, 80878397364, 309637224677, 1185423230902, 4538307034543, 17374576685400
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - Cino Hilliard, Sep 25 2005
Pisano period lengths: 1, 2, 8, 4, 24, 8, 3, 8, 24, 24, 15, 8, 168, 6, 24, 16, 16, 24, 120, 24, ... . - R. J. Mathar, Aug 10 2012

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 2*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    LinearRecurrence[{2,7},{0,1},30] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    a(n)=([0,1; 7,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
  • Sage
    [lucas_number1(n,2,-7) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

From Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003: (Start)
a(n) = a(n-1) + A083100(n-2), n>1.
A083100(n)/a(n+1) converges to sqrt(8). (End)
From Paul Barry, Jul 17 2003: (Start)
G.f.: x/ ( 1-2*x-7*x^2 ).
a(n) = ((1+2*sqrt(2))^n-(1-2*sqrt(2))^n)*sqrt(2)/8. (End)
E.g.f.: exp(x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Nov 20 2003
Second binomial transform is A000129(2n)/2 (A001109). - Paul Barry, Apr 21 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*(7/2)^k*2^(n-k-1). - Paul Barry, Jul 17 2004
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*8^k. - Paul Barry, Sep 29 2004
G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A002533 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 6 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(6). - Cino Hilliard, Sep 25 2005
a(n), n>0 = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 2,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
Pisano period lengths: 1, 1, 1, 4, 4, 1, 24, 4, 3, 4, 120, 4, 56, 24, 4, 8, 288, 3, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(k*m) is divisible by a(m) if k is odd. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    [(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Maple
    A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *)
    LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *)
    Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}]
    (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n)/A002532(n), n>0, converges to sqrt(6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
From Mario Catalani (mario.catalani(AT)unito.it), May 03 2003: (Start)
G.f.: (1-x)/(1-2*x-5*x^2).
a(n) = (1/2)*((1+sqrt(6))^n + (1-sqrt(6))^n).
a(n)/A083694(n) converges to sqrt(3/2).
a(n)/A083695(n) converges to sqrt(2/3).
a(n) = a(n-1) + 3*A083694(n-1).
a(n) = a(n-1) + 2*A083695(n-1), n>0. (End)
Binomial transform of expansion of cosh(sqrt(6)*x) (A000400, with interpolated zeros). E.g.f.: exp(x)*cosh(sqrt(6)*x) - Paul Barry, May 09 2003
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 2*a(n)*a(n+1) - (-5)^n.
a(n)^2 - 6*A002532(n)^2 = (-5)^n. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 6^k. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*6^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(I)=6, for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j)=-1 for i=j+1, and A(i,j)=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A083098 a(n) = 2*a(n-1) + 6*a(n-2).

Original entry on oeis.org

1, 1, 8, 22, 92, 316, 1184, 4264, 15632, 56848, 207488, 756064, 2757056, 10050496, 36643328, 133589632, 487039232, 1775616256, 6473467904, 23600633344, 86042074112, 313687948288, 1143628341248, 4169384372224, 15200538791936
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003

Keywords

Comments

a(n+1) = a(n) + 7*A083099(n-1); a(n+1)/A083099(n) converges to sqrt(7).
Binomial transform of expansion of cosh(sqrt(7)x) (A000420 with interpolated zeros: 1, 0, 7, 0, 49, 0, 343, 0, ...).
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005
a(n) is the number of compositions of n when there are 1 type of 1 and 7 types of other natural numbers. - Milan Janjic, Aug 13 2010

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Mathematica
    CoefficientList[Series[(1+6x)/(1-2x-6x^2), {x, 0, 25}], x]
    LinearRecurrence[{2, 6}, {1, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
    a[n_] := Simplify[((1 + Sqrt[7])^n + (1 - Sqrt[7])^n)/2]; Array[a, 25, 0] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-6*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-6)/2 for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (1-x)/(1-2*x-6*x^2).
a(n) = (1+sqrt(7))^n/2 + (1-sqrt(7))^n/2.
E.g.f.: exp(x)*cosh(sqrt(7)x).
a(n) = Sum_{k=0..n} A098158(n,k)*7^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=7, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A083100 a(n) = 2*a(n-1) + 7*a(n-2).

Original entry on oeis.org

1, 9, 25, 113, 401, 1593, 5993, 23137, 88225, 338409, 1294393, 4957649, 18976049, 72655641, 278143625, 1064876737, 4076758849, 15607654857, 59752621657, 228758827313, 875786006225, 3352883803641, 12836269650857, 49142725927201
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003

Keywords

Comments

a(n) = a(n-1) + 8*A015519(n). a(n)/A015519(n+1) converges to sqrt(8).
a(n-1) is the number of compositions of n when there is 1 type of 1 and 8 types of other natural numbers. - Milan Janjic, Aug 13 2010

Crossrefs

Essentially a duplicate of A084058.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Mathematica
    CoefficientList[Series[(1 + 7 x)/(1 - 2 x - 7 x^2), {x, 0, 25}], x] (* Or *) a[n_] := Simplify[((1 + Sqrt[8])^n + (1 - Sqrt[8])^n)/2]; Array[a, 25, 0] (* Or *) LinearRecurrence[{2, 7}, {1, 1}, 28] (* Or *) Table[ MatrixPower[{{1, 2}, {4, 1}}, n][[1, 1]], {n, 0, 25}] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 7,2]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 06 2016
    
  • PARI
    x='x+O('x^30); Vec((1+7*x)/(1-2*x-7*x^2)) \\ G. C. Greubel, Jan 08 2018
    

Formula

G.f.: (1+7*x)/(1-2*x-7*x^2).
a(n) = binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
If p[1]=1, and p[i]=8,(i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 28 2013

A111006 Another version of Fibonacci-Pascal triangle A037027.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 0, 2, 3, 0, 0, 1, 5, 5, 0, 0, 0, 3, 10, 8, 0, 0, 0, 1, 9, 20, 13, 0, 0, 0, 0, 4, 22, 38, 21, 0, 0, 0, 0, 1, 14, 51, 71, 34, 0, 0, 0, 0, 0, 5, 40, 111, 130, 55, 0, 0, 0, 0, 0, 1, 20, 105, 233, 235, 89, 0, 0, 0, 0, 0, 0, 6, 65, 256, 474, 420, 144
Offset: 0

Views

Author

Philippe Deléham, Oct 02 2005

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Row sums are the Jacobsthal numbers A001045(n+1) and column sums form Pell numbers A000129.
Maximal column entries: A038149 = {1, 1, 2, 5, 10, 22, ...}.
T(n,k) gives a convolved Fibonacci sequence (A001629, A001872, ...).
Triangle read by rows: T(n,n-k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and n-2k pieces of 1 X 2 tiles (0 <= k <= floor(n/2)). - Philippe Deléham, Feb 17 2014
Diagonal sums are A013979(n). - Philippe Deléham, Feb 17 2014
T(n,k) is the number of ways to tile a 2 X n rectangle with k pieces of 2 X 2 tiles and 1 X 2 tiles. - Emeric Deutsch, Aug 14 2014

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 2;
  0, 0, 2, 3;
  0, 0, 1, 5,  5;
  0, 0, 0, 3, 10,  8;
  0, 0, 0, 1,  9, 20, 13;
  0, 0, 0, 0,  4, 22, 38,  21;
  0, 0, 0, 0,  1, 14, 51,  71,  34;
  0, 0, 0, 0,  0,  5, 40, 111, 130,  55;
  0, 0, 0, 0,  0,  1, 20, 105, 233, 235,  89;
  0, 0, 0, 0,  0,  0,  6,  65, 256, 474, 420, 144;
		

Crossrefs

Cf. A000045, A000129, A001045, A037027, A038112, A038149, A084938, A128100 (reversed version).
Some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A114197, A162741, A228074.

Programs

  • Haskell
    a111006 n k = a111006_tabl !! n !! k
    a111006_row n = a111006_tabl !! n
    a111006_tabl =  map fst $ iterate (\(us, vs) ->
       (vs, zipWith (+) (zipWith (+) ([0] ++ us ++ [0]) ([0,0] ++ us))
                        ([0] ++ vs))) ([1], [0,1])
    -- Reinhard Zumkeller, Aug 15 2013

Formula

T(0, 0) = 1, T(n, k) = 0 for k < 0 or for n < k, T(n, k) = T(n-1, k-1) + T(n-2, k-1) + T(n-2, k-2).
T(n, k) = A037027(k, n-k). T(n, n) = A000045(n+1). T(3n, 2n) = (n+1)*A001002(n+1) = A038112(n).
G.f.: 1/(1-yx(1-x)-x^2*y^2). - Paul Barry, Oct 04 2005
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A053524(n+1), (-1)^n*A083858(n+1), (-1)^n*A002605(n), A033999(n), A000007(n), A001045(n+1), A083099(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 02 2006
Sum_{k=0..n} T(n,k)*x^(n-k) = A053404(n), A015447(n), A015446(n), A015445(n), A015443(n), A015442(n), A015441(n), A015440(n), A006131(n), A006130(n), A001045(n+1), A000045(n+1) for x = 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 respectively. - Philippe Deléham, Feb 17 2014

A207538 Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1

Views

Author

Clark Kimberling, Feb 18 2012

Keywords

Comments

As triangle T(n,k) with 0<=k<=n and with zeros omitted, it is the triangle given by (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012
The numbers in rows of the triangle are along "first layer" skew diagonals pointing top-left in center-justified triangle given in A013609 ((1+2*x)^n) and along (first layer) skew diagonals pointing top-right in center-justified triangle given in A038207 ((2+x)^n), see links. - Zagros Lalo, Jul 31 2018
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.414213562373095... (A014176: Decimal expansion of the silver mean, 1+sqrt(2)), when n approaches infinity. - Zagros Lalo, Jul 31 2018

Examples

			First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
    1
    2,   0
    4,   1,  0
    8,   4,  0, 0
   16,  12,  1, 0, 0
   32,  32,  6, 0, 0, 0
   64,  80, 24, 1, 0, 0, 0
  128, 192, 80, 8, 0, 0, 0, 0
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
    v[n_, x_] := u[n - 1, x] + v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207537, |A028297| *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207538, |A133156| *)
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
    t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n -  k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ]  // Flatten (* Zagros Lalo, Jul 31 2018 *)

Formula

u(n,x) = u(n-1,x)+(x+1)*v(n-1,x), v(n,x) = u(n-1,x)+v(n-1,x), where u(1,x) = 1, v(1,x) = 1. Also, A207538 = |A133156|.
From Philippe Deléham, Mar 04 2012: (Start)
With 0<=k<=n:
Mirror image of triangle in A099089.
Skew version of A038207.
Riordan array (1/(1-2*x), x^2/(1-2*x)).
G.f.: 1/(1-2*x-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A190958(n+1), A127357(n), A090591(n), A089181(n+1), A088139(n+1), A045873(n+1), A088138(n+1), A088137(n+1), A099087(n), A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 respectively.
T(n,k) = 2*T(n-1,k) + T(-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n, k) = 0 if k<0 or if k>n. (End)
T(n,k) = A013609(n-k, n-2*k+1). - Johannes W. Meijer, Sep 05 2013
From Tom Copeland, Feb 11 2016: (Start)
A053117 is a reflected, aerated and signed version of this entry. This entry belongs to a family discussed in A097610 with parameters h1 = -2 and h2 = -y.
Shifted o.g.f.: G(x,t) = x / (1 - 2 x - t x^2).
The compositional inverse of G(x,t) is Ginv(x,t) = -[(1 + 2x) - sqrt[(1+2x)^2 + 4t x^2]] / (2tx) = x - 2 x^2 + (4-t) x^3 - (8-6t) x^4 + ..., a shifted o.g.f. for A091894 (mod signs with A091894(0,0) = 0).
(End)

A081581 Pascal-(1,6,1) array.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 22, 78, 22, 1, 1, 29, 190, 190, 29, 1, 1, 36, 351, 848, 351, 36, 1, 1, 43, 561, 2339, 2339, 561, 43, 1, 1, 50, 820, 5006, 9766, 5006, 820, 50, 1, 1, 57, 1128, 9192, 28806, 28806, 9192, 1128, 57, 1, 1, 64, 1485, 15240, 68034, 116208, 68034, 15240, 1485, 64, 1
Offset: 0

Views

Author

Paul Barry, Mar 23 2003

Keywords

Comments

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016993, A081591, A081592. Coefficients of the row polynomials in the Newton basis are given by A013614.

Examples

			Rows start as:
  1,  1,   1,    1,    1, ... A000012;
  1,  8,  15,   22,   29, ... A016993;
  1, 15,  78,  190,  351, ... A081591;
  1, 22, 190,  848, 2339, ...
  1, 29, 351, 2339, 9766, ...
The triangle starts as:
  1;
  1,  1;
  1,  8,   1;
  1, 15,  15,    1;
  1, 22,  78,   22,    1;
  1, 29, 190,  190,   29,   1;
  1, 36, 351,  848,  351,  36,  1;
  1, 43, 561, 2339, 2339, 561, 43, 1;
		

Crossrefs

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081582 (m = 7), A143683 (m = 8).

Programs

  • Magma
    A081581:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
    [A081581(n,k,6): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
    
  • Mathematica
    Table[Hypergeometric2F1[-k, k-n, 1, 7], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
  • PARI
    t(n, k) = sum(j=0, n-k, binomial(n-k, j)*binomial(k, j)*7^j) \\ Michel Marcus, May 24 2013
    
  • Sage
    flatten([[hypergeometric([-k, k-n], [1], 7).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

Formula

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 6*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+6*x)^k/(1-x)^(k+1).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 7). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(7*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 14*x + 49*x^2/2) = 1 + 15*x + 78*x^2/2! + 190*x^3/3! + 351*x^4/4! + 561*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 6.
Sum_{k=0..n} T(n, k, 6) = A083099(n+1). (End)

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A133592 a(n) = 2*a(n-1)+6*a(n-2) for n>=3, a(0)=1, a(1)=2, a(2)=8.

Original entry on oeis.org

1, 2, 8, 28, 104, 376, 1376, 5008, 18272, 66592, 242816, 885184, 3227264, 11765632, 42894848, 156383488, 570136064, 2078573056, 7577962496, 27627363328, 100722501632, 367209183232, 1338753376256, 4880761851904, 17794043961344
Offset: 0

Views

Author

Philippe Deléham, Dec 31 2007

Keywords

Crossrefs

Programs

  • Maple
    A133592 := proc(n)
            option remember;
            if n <=1 then
                    n+1;
            elif n = 2 then
                    8;
            else
                    2*procname(n-1)+6*procname(n-2) ;
            fi ;
    end proc: # R. J. Mathar, Jul 15 2017
  • Mathematica
    Join[{1}, LinearRecurrence[{2, 6}, {2, 8}, 24]] (* Jean-François Alcover, Jul 01 2023 *)

Formula

G.f.: (1-2*x^2)/(1-2*x-6*x^2).
a(n) = Sum_{k=0..n} A122950(n,k)*2^k .
a(n) = ((7+2*sqrt(7))/21)*(1+sqrt(7))^n+((7-2*sqrt(7))/21)*(1-sqrt(7))^n for n=>1. [Richard Choulet, Nov 19 2008]
a(n) = A083099(n+1) - 2*A083099(n-1). - R. J. Mathar, Jun 20 2015

Extensions

a(16) corrected by R. J. Mathar, Jun 20 2015

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011
Previous Showing 11-20 of 31 results. Next