cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A015519 a(n) = 2*a(n-1) + 7*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 11, 36, 149, 550, 2143, 8136, 31273, 119498, 457907, 1752300, 6709949, 25685998, 98341639, 376485264, 1441362001, 5518120850, 21125775707, 80878397364, 309637224677, 1185423230902, 4538307034543, 17374576685400
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - Cino Hilliard, Sep 25 2005
Pisano period lengths: 1, 2, 8, 4, 24, 8, 3, 8, 24, 24, 15, 8, 168, 6, 24, 16, 16, 24, 120, 24, ... . - R. J. Mathar, Aug 10 2012

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.

Programs

  • Magma
    [ n eq 1 select 0 else n eq 2 select 1 else 2*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    LinearRecurrence[{2,7},{0,1},30] (* Harvey P. Dale, Oct 09 2017 *)
  • PARI
    a(n)=([0,1; 7,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
  • Sage
    [lucas_number1(n,2,-7) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
    

Formula

From Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003: (Start)
a(n) = a(n-1) + A083100(n-2), n>1.
A083100(n)/a(n+1) converges to sqrt(8). (End)
From Paul Barry, Jul 17 2003: (Start)
G.f.: x/ ( 1-2*x-7*x^2 ).
a(n) = ((1+2*sqrt(2))^n-(1-2*sqrt(2))^n)*sqrt(2)/8. (End)
E.g.f.: exp(x)*sinh(2*sqrt(2)*x)/(2*sqrt(2)). - Paul Barry, Nov 20 2003
Second binomial transform is A000129(2n)/2 (A001109). - Paul Barry, Apr 21 2004
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1, k)*(7/2)^k*2^(n-k-1). - Paul Barry, Jul 17 2004
a(n) = Sum_{k=0..n} binomial(n, 2*k+1)*8^k. - Paul Barry, Sep 29 2004
G.f.: G(0)*x/(2*(1-x)), where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A002533 a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0

Views

Author

Keywords

Comments

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 6 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(6). - Cino Hilliard, Sep 25 2005
a(n), n>0 = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 2,1]. - Gary W. Adamson, Aug 06 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 6 types of other natural numbers. - Milan Janjic, Aug 13 2010
Pisano period lengths: 1, 1, 1, 4, 4, 1, 24, 4, 3, 4, 120, 4, 56, 24, 4, 8, 288, 3, 18, 4, ... - R. J. Mathar, Aug 10 2012
a(k*m) is divisible by a(m) if k is odd. - Robert Israel, May 03 2024

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    [(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Maple
    A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *)
    LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *)
    Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}]
    (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n)/A002532(n), n>0, converges to sqrt(6). - Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
From Mario Catalani (mario.catalani(AT)unito.it), May 03 2003: (Start)
G.f.: (1-x)/(1-2*x-5*x^2).
a(n) = (1/2)*((1+sqrt(6))^n + (1-sqrt(6))^n).
a(n)/A083694(n) converges to sqrt(3/2).
a(n)/A083695(n) converges to sqrt(2/3).
a(n) = a(n-1) + 3*A083694(n-1).
a(n) = a(n-1) + 2*A083695(n-1), n>0. (End)
Binomial transform of expansion of cosh(sqrt(6)*x) (A000400, with interpolated zeros). E.g.f.: exp(x)*cosh(sqrt(6)*x) - Paul Barry, May 09 2003
From Mario Catalani (mario.catalani(AT)unito.it), Jun 14 2003: (Start)
a(2*n+1) = 2*a(n)*a(n+1) - (-5)^n.
a(n)^2 - 6*A002532(n)^2 = (-5)^n. (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * 6^k. - Paul Barry, Jul 25 2004
a(n) = Sum_{k=0..n} A098158(n,k)*6^(n-k). - Philippe Deléham, Dec 26 2007
If p(1)=1, and p(I)=6, for i>1, and if A is the Hessenberg matrix of order n defined by: A(i,j) = p(j-i+1) for i<=j, A(i,j)=-1 for i=j+1, and A(i,j)=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6*k-1)/(x*(6*k+5) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A083098 a(n) = 2*a(n-1) + 6*a(n-2).

Original entry on oeis.org

1, 1, 8, 22, 92, 316, 1184, 4264, 15632, 56848, 207488, 756064, 2757056, 10050496, 36643328, 133589632, 487039232, 1775616256, 6473467904, 23600633344, 86042074112, 313687948288, 1143628341248, 4169384372224, 15200538791936
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003

Keywords

Comments

a(n+1) = a(n) + 7*A083099(n-1); a(n+1)/A083099(n) converges to sqrt(7).
Binomial transform of expansion of cosh(sqrt(7)x) (A000420 with interpolated zeros: 1, 0, 7, 0, 49, 0, 343, 0, ...).
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005
a(n) is the number of compositions of n when there are 1 type of 1 and 7 types of other natural numbers. - Milan Janjic, Aug 13 2010

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Programs

  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
  • Mathematica
    CoefficientList[Series[(1+6x)/(1-2x-6x^2), {x, 0, 25}], x]
    LinearRecurrence[{2, 6}, {1, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
    a[n_] := Simplify[((1 + Sqrt[7])^n + (1 - Sqrt[7])^n)/2]; Array[a, 25, 0] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-2*x-6*x^2)) \\ G. C. Greubel, Jan 08 2018
    
  • Sage
    [lucas_number2(n,2,-6)/2 for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
    

Formula

G.f.: (1-x)/(1-2*x-6*x^2).
a(n) = (1+sqrt(7))^n/2 + (1-sqrt(7))^n/2.
E.g.f.: exp(x)*cosh(sqrt(7)x).
a(n) = Sum_{k=0..n} A098158(n,k)*7^(n-k). - Philippe Deléham, Dec 26 2007
If p[1]=1, and p[i]=7, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

A084058 a(n) = 2*a(n-1) + 7*a(n-2) for n>1, a(0)=1, a(1)=1.

Original entry on oeis.org

1, 1, 9, 25, 113, 401, 1593, 5993, 23137, 88225, 338409, 1294393, 4957649, 18976049, 72655641, 278143625, 1064876737, 4076758849, 15607654857, 59752621657, 228758827313, 875786006225, 3352883803641, 12836269650857, 49142725927201
Offset: 0

Views

Author

Paul Barry, May 10 2003

Keywords

Comments

Binomial transform of expansion of cosh(sqrt(8)x) (A001018 with interpolated zeros : 1, 0, 8, 0, 64, 0, 512, 0, ...); inverse binomial transform of A084128.
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 8 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(8). - Cino Hilliard, Sep 25 2005

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

Essentially a duplicate of A083100.

Programs

  • GAP
    a:=[1,1];; for n in [3..30] do a[n]:=2*a[n-1]+7*a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    Z:= PolynomialRing(Integers()); N:=NumberField(x^2-8); S:=[ ((1+r8)^n+(1-r8)^n)/2: n in [0..30] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Nov 16 2008
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) +7*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    a[n_]:= Simplify[((1 + Sqrt[8])^n + (1 - Sqrt[8])^n)/2]; Array[a, 30, 0] (* Or *) CoefficientList[Series[(1-x)/(1-2x-7x^2), {x,0,30}], x] (* Or *) LinearRecurrence[{2, 7}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-7*x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-2*x-7*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = ((1+sqrt(8))^n + (1-sqrt(8))^n)/2.
G.f.: (1-x)/(1-2*x-7*x^2).
E.g.f.: exp(x) * cosh(sqrt(8)*x).
a(n) = Sum_{k=0..n} A098158(n,k)*8^(n-k). - Philippe Deléham, Dec 26 2007
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
Satisfies recurrence relation system a(n) = 2*b(n-1) - a(n-1), b(n) = 3*b(n-1) + 2*a(n-1), a(0)=1, b(0)=1. - Ilya Gutkovskiy, Apr 11 2017

A164683 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 8.

Original entry on oeis.org

1, 8, 8, 64, 64, 512, 512, 4096, 4096, 32768, 32768, 262144, 262144, 2097152, 2097152, 16777216, 16777216, 134217728, 134217728, 1073741824, 1073741824, 8589934592, 8589934592, 68719476736, 68719476736, 549755813888
Offset: 1

Views

Author

Klaus Brockhaus, Aug 22 2009

Keywords

Comments

Interleaving of A001018 and A001018 without initial term 1.
Binomial transform is A083100. Second binomial transform is A164607.

Crossrefs

Cf. A001018 (powers of 8), A083100, A164607.

Programs

  • Magma
    [ n le 2 select 7*n-6 else 8*Self(n-2): n in [1..26] ];
  • Mathematica
    With[{c=8^Range[0,15]},Riffle[c,c]]//Rest (* Harvey P. Dale, Aug 08 2017 *)

Formula

a(n) = 2^(1/4*(6*n-3+3*(-1)^n)).
G.f.: x*(1+8*x)/(1-8*x^2).

A164607 a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 10.

Original entry on oeis.org

1, 10, 44, 216, 1040, 5024, 24256, 117120, 565504, 2730496, 13184000, 63657984, 307367936, 1484103680, 7165886464, 34599960576, 167063388160, 806653394944, 3894867132416, 18806082109440, 90803796967424, 438439516307456
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

Keywords

Comments

Binomial transform of A083100. Second binomial transform of A164683. Inverse binomial transform of A054490.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+4*r)*(2+2*r)^n+(2-4*r)*(2-2*r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 22 2009
    
  • Mathematica
    LinearRecurrence[{4,4},{1,10},40] (* Harvey P. Dale, Jun 28 2011 *)
  • PARI
    x='x+O('x^50); Vec((1+6*x)/(1-4*x-4*x^2)) \\ G. C. Greubel, Aug 10 2017

Formula

a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
a(n) = ((2+4*sqrt(2))*(2+2*sqrt(2))^n + (2-4*sqrt(2))*(2-2*sqrt(2))^n)/4.
G.f.: (1+6*x)/(1-4*x-4*x^2).
G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 + 1/(1 - x*(8*k-1)/(x*(8*k+7) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
E.g.f.: exp(2*x)*(cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 10 2017

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 22 2009

A154348 a(n) = 16*a(n-1) - 56*a(n-2) for n>1, with a(0)=1, a(1)=16.

Original entry on oeis.org

1, 16, 200, 2304, 25664, 281600, 3068416, 33325056, 361369600, 3915710464, 42414669824, 459354931200, 4974457389056, 53867442077696, 583309459456000, 6316374594945024, 68396663789584384, 740629643316428800
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009

Keywords

Comments

Third binomial transform of A164609, fourth binomial transform of A164608, fifth binomial transform of A054490, sixth binomial transform of A164607, seventh binomial transform of A083100, eighth binomial transform of A164683.
lim_{n -> infinity} a(n)/a(n-1) = 8 + 2*sqrt(2) = 10.8284271247....

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A164609, A164608, A054490, A164607, A083100, A164683.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+2*r)^n-(8-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
  • Mathematica
    Join[{a=1,b=16},Table[c=16*b-56*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    LinearRecurrence[{16,-56},{1,16},30] (* Harvey P. Dale, Aug 31 2016 *)

Formula

a(n) = 16*a(n-1) - 56*a(n-2) for n>1. - Philippe Deléham, Jan 12 2009
a(n) = ( (8 + 2*sqrt(2))^n - (8 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: 1/(1 - 16*x + 56*x^2). - Klaus Brockhaus, Jan 12 2009; corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(8*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021

A160444 Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1

Views

Author

Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

Keywords

Comments

This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.
It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.
This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A160444
        if (n<5): return ((n+1)//3)
        else: return 2*(a(n-2) + a(n-4))
    [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = 2*a(n-2) + 2*a(n-4).
a(2*n+1) = A002605(n).
a(2*n) = A026150(n-1).

Extensions

Edited by R. J. Mathar, May 14 2009

A247584 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5) with a(0) = a(1) = a(2) = a(3) = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 13, 43, 113, 253, 509, 969, 1849, 3719, 8009, 18027, 40897, 91257, 198697, 423777, 894081, 1886011, 4007301, 8594411, 18560081, 40181493, 86872293, 187197193, 402060793, 861827743, 1846685729, 3960390059, 8504658049, 18283290609, 39325827729
Offset: 0

Views

Author

Alexander Samokrutov, Sep 20 2014

Keywords

Comments

a(n)/a(n-1) tends to 2.1486... = 1 + 2^(1/5), the real root of the polynomial x^5 - 5*x^4 + 10*x^3 - 10*x^2 + 5*x - 3.
If x^5 = 2 and n >= 0, then there are unique integers a, b, c, d, g such that (1 + x)^n = a + b*x + c*x^2 + d*x^3 + g*x^4. The coefficient a is a(n) (from A052102). - Alexander Samokrutov, Jul 11 2015
If x=a(n), y=a(n+1), z=a(n+2), s=a(n+3), t=a(n+4) then x, y, z, s, t satisfies Diophantine equation (see link). - Alexander Samokrutov, Jul 11 2015

Crossrefs

Cf. A005531.

Programs

  • Magma
    [n le 5 select 1 else 5*Self(n-1) -10*Self(n-2) +10*Self(n-3) -5*Self(n-4) +3*Self(n-5): n in [1..40]]; // Vincenzo Librandi, Jul 11 2015
    
  • Maple
    m:=50; S:=series( (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5), x, m+1):
    seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 15 2021
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,3}, {1,1,1,1,1}, 50] (* Vincenzo Librandi, Jul 11 2015 *)
  • Maxima
    makelist(sum(2^k*binomial(n,5*k), k, 0, floor(n/5)), n, 0, 50); /* Alexander Samokrutov, Jul 11 2015 */
    
  • PARI
    Vec((1-x)^4/(1-5*x+10*x^2-10*x^3+5*x^4-3*x^5) + O(x^100)) \\ Colin Barker, Sep 22 2014
    
  • Sage
    [sum(2^j*binomial(n, 5*j) for j in (0..n//5)) for n in (0..50)] # G. C. Greubel, Apr 15 2021

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + 3*a(n-5).
a(n) = Sum_{k=0...floor(n/5)} (2^k*binomial(n,5*k)). - Alexander Samokrutov, Jul 11 2015
G.f.: (1-x)^4/(1 -5*x +10*x^2 -10*x^3 +5*x^4 -3*x^5). - Colin Barker, Sep 22 2014

A292848 a(n) is the smallest prime of form (1/2)*((1 + sqrt(2*n))^k + (1 - sqrt(2*n))^k).

Original entry on oeis.org

3, 5, 7, 113, 11, 13, 43, 17, 19, 61, 23, 73, 79, 29, 31, 97, 103, 37, 1241463763, 41, 43, 664973, 47, 2593, 151, 53, 163, 14972833, 59, 61, 4217, 193, 67, 23801, 71, 73, 223, 229, 79, 241, 83, 7561, 61068909859, 89, 271, 277, 283, 97, 10193, 101, 103, 313
Offset: 1

Views

Author

XU Pingya, Sep 24 2017

Keywords

Comments

When 2n + 1 = p is prime, a(n) = p.
From Robert Israel, Sep 26 2017: (Start)
a(n) is also the first prime in the sequence defined by the recursion x(k+2)=2*x(k+1)+(2*n-1)*x(k) with x(0)=x(1)=1.
a(307), if it exists, has more than 10000 digits.
It appears that x(n*k) is divisible by x(k) if n is odd. Thus a(n) (if it exists) must be x(k) where k is either a power of 2 or a prime. (End)

Examples

			For k = {1, 2, 3, 4}, (1/2)((1 + sqrt(8))^k + (1 - sqrt(8))^k) = {1, 9, 25, 113}. 113 is prime, so a(4) = 113.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,t;
      a:= 1; b:= 1;
      do
        t:= a; a:= 2*a + (2*n-1)*b;
        if isprime(a) then return a fi;
        b:= t;
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 26 2017
  • Mathematica
    f[n_, k_] := ((1 + Sqrt[n])^k + (1 - Sqrt[n])^k)/2;
    Table[k = 1; While[! PrimeQ[Expand@f[2n, k]], k++]; Expand@f[2n, k], {n, 52}]
Previous Showing 11-20 of 20 results.