cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A338907 Semiprimes whose prime indices sum to an odd number.

Original entry on oeis.org

6, 14, 15, 26, 33, 35, 38, 51, 58, 65, 69, 74, 77, 86, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 158, 161, 177, 178, 185, 201, 202, 209, 214, 215, 217, 219, 221, 226, 249, 262, 265, 278, 287, 291, 299, 302, 305, 309, 319, 323, 326, 327, 329, 346, 355
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

All terms are squarefree (A005117).
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.
The semiprimes in A300063; the semiprimes in A332820. - Peter Munn, Dec 25 2020

Examples

			The sequence of terms together with their prime indices begins:
      6: {1,2}      95: {3,8}     202: {1,26}
     14: {1,4}     106: {1,16}    209: {5,8}
     15: {2,3}     119: {4,7}     214: {1,28}
     26: {1,6}     122: {1,18}    215: {3,14}
     33: {2,5}     123: {2,13}    217: {4,11}
     35: {3,4}     141: {2,15}    219: {2,21}
     38: {1,8}     142: {1,20}    221: {6,7}
     51: {2,7}     143: {5,6}     226: {1,30}
     58: {1,10}    145: {3,10}    249: {2,23}
     65: {3,6}     158: {1,22}    262: {1,32}
     69: {2,9}     161: {4,9}     265: {3,16}
     74: {1,12}    177: {2,17}    278: {1,34}
     77: {4,5}     178: {1,24}    287: {4,13}
     86: {1,14}    185: {3,12}    291: {2,25}
     93: {2,11}    201: {2,19}    299: {6,9}
		

Crossrefs

A031368 looks at primes instead of semiprimes.
A098350 has this as union of odd-indexed antidiagonals.
A300063 looks at all numbers (not just semiprimes).
A338904 has this as union of odd-indexed rows.
A338906 is the even version.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338908 lists squarefree semiprimes of even weight.
A339114/A339115 give the least/greatest semiprime of weight n.
Subsequence of A332820.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&OddQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338907(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

Complement of A338906 in A001358.

A112141 Product of the first n semiprimes.

Original entry on oeis.org

4, 24, 216, 2160, 30240, 453600, 9525600, 209563200, 5239080000, 136216080000, 4495130640000, 152834441760000, 5349205461600000, 203269807540800000, 7927522494091200000, 364666034728195200000, 17868635701681564800000, 911300420785759804800000
Offset: 1

Views

Author

Jonathan Vos Post, Nov 28 2005

Keywords

Comments

Semiprime analog of primorial (A002110). Equivalent for product of what A062198 is for sum.

Examples

			a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes.
From _Gus Wiseman_, Dec 06 2020: (Start)
The sequence of terms together with their prime signatures begins:
                        4: (2)
                       24: (3,1)
                      216: (3,3)
                     2160: (4,3,1)
                    30240: (5,3,1,1)
                   453600: (5,4,2,1)
                  9525600: (5,5,2,2)
                209563200: (6,5,2,2,1)
               5239080000: (6,5,4,2,1)
             136216080000: (7,5,4,2,1,1)
            4495130640000: (7,6,4,2,2,1)
          152834441760000: (8,6,4,2,2,1,1)
         5349205461600000: (8,6,5,3,2,1,1)
       203269807540800000: (9,6,5,3,2,1,1,1)
      7927522494091200000: (9,7,5,3,2,2,1,1)
    364666034728195200000: (10,7,5,3,2,2,1,1,1)
  17868635701681564800000: (10,7,5,5,2,2,1,1,1)
(End)
		

Crossrefs

Partial sums of semiprimes are A062198.
First differences of semiprimes are A065516.
A000040 lists primes, with partial products A002110 (primorials).
A000142 lists factorials, with partial products A000178 (superfactorials).
A001358 lists semiprimes, with partial products A112141 (this sequence).
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial products A339191.
A101048 counts partitions into semiprimes (restricted: A338902).
A320655 counts factorizations into semiprimes.
A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506.
A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900.

Programs

  • Maple
    A112141 := proc(n)
        mul(A001358(i),i=1..n) ;
    end proc:
    seq(A112141(n),n=1..10) ; # R. J. Mathar, Jun 30 2020
  • Mathematica
    NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* Robert G. Wilson v, Jun 13 2013 *)
    FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* Gus Wiseman, Dec 06 2020 *)
  • PARI
    a(n)=my(v=vector(n),i,k=3);while(iCharles R Greathouse IV, Apr 04 2013
    
  • Python
    from sympy import factorint
    def aupton(terms):
        alst, k, p = [], 1, 1
        while len(alst) < terms:
            if sum(factorint(k).values()) == 2:
                p *= k
                alst.append(p)
            k += 1
        return alst
    print(aupton(18)) # Michael S. Branicky, Aug 31 2021

Formula

a(n) = Product_{i=1..n} A001358(i).
A001222(a(n)) = 2*n.

A138511 Semiprimes where the larger prime factor is greater than the square of the smaller prime factor, short: semiprimes p*q, p^2 < q.

Original entry on oeis.org

10, 14, 22, 26, 33, 34, 38, 39, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 118, 122, 123, 129, 134, 141, 142, 145, 146, 155, 158, 159, 166, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 215, 218, 219, 226, 235, 237, 249, 254, 262, 265, 267, 274, 278, 291, 295, 298, 302, 303, 305
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 21 2008

Keywords

Comments

From Antti Karttunen, Dec 17 2014, further edited Jan 01 & 04 2014: (Start)
Semiprimes p*q, p < q, such that the smallest r for which r^k <= p and q < r^(k+1) [for some k >= 0] is q+1, and thus k = 0. In other words, semiprimes whose both prime factors do not fit (simultaneously) between any two consecutive powers of any natural number r less than or equal to the larger prime factor. This condition forces the larger prime factor q to be greater than the square of the smaller prime factor because otherwise the opposite condition given in A251728 would hold.
Assuming that A054272(n), the number of primes in interval [prime(n), prime(n)^2], is nondecreasing (implied for example if Legendre's or Brocard's conjecture is true), these are also "unsettled" semiprimes that occur in a square array A083221 constructed from the sieve of Eratosthenes, "above the line A251719", meaning that if and only if row < A251719(col) then a semiprime occurring at A083221(row, col) is in this sequence, and conversely, all the semiprimes that occur at any position A083221(row, col) where row >= A251719(col) are in the complementary sequence A251728.
(End)
Semiprimes p*q, p < q, such that b = q+1 is the minimal base with the property that p and q have equal length representations in base b. This was the original definition, which is based primarily on A138510: A138510(A174956(a(n))) = A084127(A174956(a(n))) + 1.

Examples

			See A138510.
		

Crossrefs

Cf. A138510.
Complement of A251728 in A001358.
Subsequence of A088381.
An intersection of A001358 (semiprimes) and A251727.
Also an intersection of A001358 and A253569, from the latter which this sequence differs for the first time at n=60, where A253569(60) = 290, while here a(60) = 291.
Also an intersection A001358 and A245729.

Programs

Formula

Other identities. For all n >= 1 it holds that:
A138510(A174956(a(n))) = A084127(A174956(a(n))) + 1.

Extensions

Wrong comment corrected by Reinhard Zumkeller, Dec 16 2014
New definition by Antti Karttunen, Jan 01 2015; old definition moved to comment.
More terms from Antti Karttunen, Jan 09 2015

A344291 Numbers whose sum of prime indices is at least twice their number of prime indices (counted with multiplicity).

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 15 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}       25: {3,3}      43: {14}       62: {1,11}
     3: {2}      26: {1,6}      44: {1,1,5}    63: {2,2,4}
     5: {3}      27: {2,2,2}    45: {2,2,3}    65: {3,6}
     7: {4}      28: {1,1,4}    46: {1,9}      66: {1,2,5}
     9: {2,2}    29: {10}       47: {15}       67: {19}
    10: {1,3}    30: {1,2,3}    49: {4,4}      68: {1,1,7}
    11: {5}      31: {11}       50: {1,3,3}    69: {2,9}
    13: {6}      33: {2,5}      51: {2,7}      70: {1,3,4}
    14: {1,4}    34: {1,7}      52: {1,1,6}    71: {20}
    15: {2,3}    35: {3,4}      53: {16}       73: {21}
    17: {7}      37: {12}       55: {3,5}      74: {1,12}
    19: {8}      38: {1,8}      57: {2,8}      75: {2,3,3}
    21: {2,4}    39: {2,6}      58: {1,10}     76: {1,1,8}
    22: {1,5}    41: {13}       59: {17}       77: {4,5}
    23: {9}      42: {1,2,4}    61: {18}       78: {1,2,6}
For example, the prime indices of 45 are {2,2,3} with sum 7 >= 2*3, so 45 is in the sequence.
		

Crossrefs

The partitions with these Heinz numbers are counted by A110618.
The conjugate version is A322109.
The case of equality is A340387, counted by A035363.
The 5-smooth case is A344293, with non-3-smooth case A344294.
The opposite version is A344296.
The conjugate opposite version is A344414.
The conjugate case of equality is A344415.
A001221 counts distinct prime indices.
A001222 counts prime indices with multiplicity.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]<=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]

Formula

A056239(a(n)) >= 2*A001222(a(n)).

A014673 Smallest prime factor of greatest proper divisor of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 2, 3, 5, 1, 2, 1, 7, 5, 2, 1, 3, 1, 2, 7, 11, 1, 2, 5, 13, 3, 2, 1, 3, 1, 2, 11, 17, 7, 2, 1, 19, 13, 2, 1, 3, 1, 2, 3, 23, 1, 2, 7, 5, 17, 2, 1, 3, 11, 2, 19, 29, 1, 2, 1, 31, 3, 2, 13, 3, 1, 2, 23, 5, 1, 2, 1, 37, 5, 2, 11, 3, 1, 2, 3, 41, 1, 2, 17, 43, 29, 2, 1, 3, 13, 2, 31, 47
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 24 2003

Keywords

Comments

For n > 1: a(n) = 1 iff n is prime; a(A001358(n)) = A084127(n); a(A025475(n)) = A020639(A025475(n)). [corrected by Peter Munn, Feb 19 2017]
When n is composite, this is the 2nd factor when n is written as a product of primes in nondecreasing order. For example, 12 = 2*2*3, so a(12) = 2. - Peter Munn, Feb 19 2017
For all sufficiently large n the median value of a(1), a(2), ... a(n) is A281889(2) = 7. - Peter Munn, Jul 12 2019

Crossrefs

Programs

  • Mathematica
    PrimeFactors[ n_ ] := Flatten[ Table[ # [ [ 1 ] ], {1} ] & /@ FactorInteger[ n ] ]; f[ n_ ] := Block[ {gpd = Divisors[ n ][ [ -2 ] ]}, If[ gpd == 1, 1, PrimeFactors[ gpd ][ [ 1 ] ] ] ]; Table[ If[ n == 1, 1, f[ n ] ], {n, 1, 95} ]
    (* Second program: *)
    Table[If[Or[PrimeQ@ n, n == 1], 1, FactorInteger[n/SelectFirst[Prime@ Range@ PrimePi[Sqrt@ n], Divisible[n, #] &]][[1, 1]] ], {n, 94}] (* Michael De Vlieger, Aug 14 2017 *)
  • PARI
    lpf(n)=if(n>1,factor(n)[1,1],1)
    a(n)=lpf(n/lpf(n)) \\ Charles R Greathouse IV, May 09 2013
    
  • PARI
    a(n)=if(n<4||isprime(n),return(1)); my(f=factor(n)); if(f[1,2]>1, f[1,1], f[2,1]) \\ Charles R Greathouse IV, May 09 2013
    
  • Scheme
    (define (A014673 n) (A020639 (/ n (A020639 n)))) ;; Code for A020639 given under that entry - Antti Karttunen, Aug 12 2017

Formula

a(n) = A020639(A032742(n)).
A117357(n) = A020639(A054576(n)); A117358(n) = A032742(A054576(n)) = A054576(n)/A117357(n). - Reinhard Zumkeller, Mar 10 2006
If A001222(n) >= 2, a(n) = A027746(n,2), otherwise a(n) = 1. - Peter Munn, Jul 13 2019

A339114 Least semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 9, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

Converges to A100484.
After a(4) = 9, also the least squarefree semiprime whose prime indices sum to n.
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}     106: {1,16}    254: {1,31}
      6: {1,2}     118: {1,17}    262: {1,32}
      9: {2,2}     122: {1,18}    274: {1,33}
     14: {1,4}     134: {1,19}    278: {1,34}
     21: {2,4}     142: {1,20}    298: {1,35}
     26: {1,6}     146: {1,21}    302: {1,36}
     34: {1,7}     158: {1,22}    314: {1,37}
     38: {1,8}     166: {1,23}    326: {1,38}
     46: {1,9}     178: {1,24}    334: {1,39}
     58: {1,10}    194: {1,25}    346: {1,40}
     62: {1,11}    202: {1,26}    358: {1,41}
     74: {1,12}    206: {1,27}    362: {1,42}
     82: {1,13}    214: {1,28}    382: {1,43}
     86: {1,14}    218: {1,29}    386: {1,44}
     94: {1,15}    226: {1,30}    394: {1,45}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A332765/A332877 is the greatest squarefree semiprime of weight n.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Mathematica
    Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
    Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020

A338906 Semiprimes whose prime indices sum to an even number.

Original entry on oeis.org

4, 9, 10, 21, 22, 25, 34, 39, 46, 49, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 121, 129, 133, 134, 146, 155, 159, 166, 169, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 289, 295, 298, 301, 303, 314, 321, 334, 335, 339
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
      4: {1,1}      87: {2,10}    183: {2,18}    274: {1,33}
      9: {2,2}      91: {4,6}     187: {5,7}     289: {7,7}
     10: {1,3}      94: {1,15}    194: {1,25}    295: {3,17}
     21: {2,4}     111: {2,12}    203: {4,10}    298: {1,35}
     22: {1,5}     115: {3,9}     205: {3,13}    301: {4,14}
     25: {3,3}     118: {1,17}    206: {1,27}    303: {2,26}
     34: {1,7}     121: {5,5}     213: {2,20}    314: {1,37}
     39: {2,6}     129: {2,14}    218: {1,29}    321: {2,28}
     46: {1,9}     133: {4,8}     235: {3,15}    334: {1,39}
     49: {4,4}     134: {1,19}    237: {2,22}    335: {3,19}
     55: {3,5}     146: {1,21}    247: {6,8}     339: {2,30}
     57: {2,8}     155: {3,11}    253: {5,9}     341: {5,11}
     62: {1,11}    159: {2,16}    254: {1,31}    358: {1,41}
     82: {1,13}    166: {1,23}    259: {4,12}    361: {8,8}
     85: {3,7}     169: {6,6}     267: {2,24}    365: {3,21}
		

Crossrefs

A031215 looks at primes instead of semiprimes.
A098350 has this as union of even-indexed antidiagonals.
A300061 looks at all numbers (not just semiprimes).
A338904 has this as union of even-indexed rows.
A338907 is the odd version.
A338908 is the squarefree case.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A056239 gives the sum of prime indices (Heinz weight).
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A289182/A115392 list the positions of odd/even terms in A001358.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338911 lists products of pairs of primes both of even index.
A339114/A339115 give the least/greatest semiprime of weight n.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],PrimeOmega[#]==2&&EvenQ[Total[primeMS[#]]]&]
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A338906(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1),-1))
        return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025

Formula

A339112 Products of primes of semiprime index (A106349).

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.
Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
     1:            149:   (34)     313:     (36)
     7:   (11)     161: (11)(22)   329:   (11)(23)
    13:   (12)     163:   (18)     343: (11)(11)(11)
    23:   (22)     167:   (26)     347:     (29)
    29:   (13)     169: (12)(12)   373:     (1C)
    43:   (14)     199:   (19)     377:   (12)(13)
    47:   (23)     203: (11)(13)   389:     (45)
    49: (11)(11)   227:   (44)     421:     (1D)
    73:   (24)     233:   (27)     439:     (37)
    79:   (15)     257:   (35)     443:     (1E)
    91: (11)(12)   269:   (28)     449:     (2A)
    97:   (33)     271:   (1A)     467:     (46)
   101:   (16)     293:   (1B)     487:     (2B)
   137:   (25)     299: (12)(22)   491:     (1F)
   139:   (17)     301: (11)(14)   499:     (38)
		

Crossrefs

These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A056239 gives the sum of prime indices, which are listed by A112798.
A084126 and A084127 give the prime factors of semiprimes.
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A338898, A338912, and A338913 give the prime indices of semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Maple
    N:= 1000: # for terms up to N
    SP:= {}: p:= 1:
    for i from 1 do
      p:= nextprime(p);
      if 2*p > N then break fi;
      Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
      SP:= SP union Q;
    od:
    SP:= sort(convert(SP,list)):
    PSP:= map(ithprime,SP):
    R:= {1}:
    for p in PSP do
      Rp:= {}:
      for k from 1 while p^k <= N do
        Rpk:= select(`<=`,R, N/p^k);
        Rp:= Rp union map(`*`,Rpk, p^k);
      od;
      R:= R union Rp;
    od:
    sort(convert(R,list)); # Robert Israel, Nov 03 2024
  • Mathematica
    semiQ[n_]:=PrimeOmega[n]==2;
    Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]

A068318 Sum of prime factors of n-th semiprime.

Original entry on oeis.org

4, 5, 6, 7, 9, 8, 10, 13, 10, 15, 14, 19, 12, 21, 16, 25, 14, 20, 16, 22, 31, 33, 18, 26, 39, 18, 43, 22, 45, 32, 20, 34, 49, 24, 55, 40, 28, 61, 24, 22, 63, 44, 46, 26, 69, 50, 73, 24, 34, 75, 36, 81, 56, 30, 85, 26, 62, 91, 64, 42, 28, 99, 70, 103, 36, 46, 105, 30, 74, 109
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2002

Keywords

Comments

Odd k is a term if and only if k - 2 is prime. Goldbach's conjecture implies that every even number k >= 4 is a term. - Jianing Song, May 26 2021

Examples

			a(2) = 5 because A001358(2) = 6 = 2*3 and 2+3 = 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if bigomega(n)=2 and nops(factorset(n))=2 then factorset(n)[1]+factorset(n)[2] elif bigomega(n)=2 then 2*sqrt(n) else fi end: seq(a(n),n=1..214); # Emeric Deutsch
  • Mathematica
    f[n_] := Total[#1*#2 & @@@ FactorInteger@ n]; f@# & /@ Select[Range@300, PrimeOmega@# == 2 &] (* Robert G. Wilson v, Jan 23 2013 *)
  • PARI
    s(n) = my(f = factor(n)); if(bigomega(f) == 2, f[,1]~*f[,2], 0);
    list(lim) = select(x -> x > 0, apply(s, vector(lim, i, i))); \\ Amiram Eldar, May 15 2025
  • Python
    from math import isqrt
    from sympy import primepi, primerange, factorint
    def A068318(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1)))
        return sum(p*e for p,e in factorint(bisection(f,n,n)).items()) # Chai Wah Wu, Apr 03 2025
    

Formula

a(n) = A001414(A001358(n)).
a(n) = A003415(A001358(n)), the arithmetic derivative.
If A001358(n) = s*p, then in this sequence a(n) = s+p.
a(n) = A084126(n)+A084127(n). - Reinhard Zumkeller, Jul 24 2006 [Typo in formula fixed by Zak Seidov, Aug 23 2014]

A339115 Greatest semiprime whose prime indices sum to n.

Original entry on oeis.org

4, 6, 10, 15, 25, 35, 55, 77, 121, 143, 187, 221, 289, 323, 391, 493, 551, 667, 841, 899, 1073, 1189, 1369, 1517, 1681, 1763, 1961, 2183, 2419, 2537, 2809, 3127, 3481, 3599, 3953, 4189, 4489, 4757, 5041, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633
Offset: 2

Views

Author

Gus Wiseman, Nov 28 2020

Keywords

Comments

A semiprime is a product of any two prime numbers. A prime index of n is a number m such that the m-th prime number divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
        4: {1,1}      493: {7,10}      2809: {16,16}
        6: {1,2}      551: {8,10}      3127: {16,17}
       10: {1,3}      667: {9,10}      3481: {17,17}
       15: {2,3}      841: {10,10}     3599: {17,18}
       25: {3,3}      899: {10,11}     3953: {17,19}
       35: {3,4}     1073: {10,12}     4189: {17,20}
       55: {3,5}     1189: {10,13}     4489: {19,19}
       77: {4,5}     1369: {12,12}     4757: {19,20}
      121: {5,5}     1517: {12,13}     5041: {20,20}
      143: {5,6}     1681: {13,13}     5293: {19,22}
      187: {5,7}     1763: {13,14}     5723: {17,25}
      221: {6,7}     1961: {12,16}     5963: {19,24}
      289: {7,7}     2183: {12,17}     6499: {19,25}
      323: {7,8}     2419: {13,17}     6887: {20,25}
      391: {7,9}     2537: {14,17}     7171: {20,26}
		

Crossrefs

A024697 is the sum of the same semiprimes.
A332765/A332877 is the squarefree case.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A001358 lists semiprimes, with odd/even terms A046315/A100484.
A006881 lists squarefree semiprimes, with odd/even terms A046388/A100484.
A037143 lists primes and semiprimes.
A084126 and A084127 give the prime factors of semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
A338898, A338912, and A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338899, A270650, and A270652 give the prime indices of squarefree semiprimes, with difference A338900.
A338907/A338906 list semiprimes of odd/even weight.
A338907/A338908 list squarefree semiprimes of odd/even weight.

Programs

  • Maple
    P:= [seq(ithprime(i),i=1..200)]:
    [seq(max(seq(P[i]*P[j-i],i=1..j-1)),j=2..200)]; # Robert Israel, Dec 06 2020
  • Mathematica
    Table[Max@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
Previous Showing 11-20 of 42 results. Next