cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A188135 a(n) = 8*n^2 + 2*n + 1.

Original entry on oeis.org

1, 11, 37, 79, 137, 211, 301, 407, 529, 667, 821, 991, 1177, 1379, 1597, 1831, 2081, 2347, 2629, 2927, 3241, 3571, 3917, 4279, 4657, 5051, 5461, 5887, 6329, 6787, 7261, 7751, 8257, 8779, 9317, 9871, 10441, 11027, 11629, 12247, 12881, 13531, 14197, 14879, 15577, 16291, 17021, 17767
Offset: 0

Views

Author

Paul Curtz, Mar 30 2011

Keywords

Comments

Bisection of A193867. - Omar E. Pol, Aug 16 2011
Sequence found by reading the line from 1, in the direction 1, 11, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 04 2011

Crossrefs

Programs

Formula

First differences: a(n) - a(n-1) = 16*n - 6 = A113770(n) = 2*A004770(n).
Second differences: a(n) - 2*a(n-1) + a(n-2) = 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From R. J. Mathar, Apr 06 2011: (Start)
G.f.: -(1+x)*(7*x+1)/(x-1)^3.
a(n) = A084849(2*n). (End)
E.g.f.: exp(x)*(1 + 10*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024

Extensions

a(41)-a(47) from Elmo R. Oliveira, Oct 19 2024

A007606 Take 1, skip 2, take 3, etc.

Original entry on oeis.org

1, 4, 5, 6, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 43, 44, 45, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 137, 138
Offset: 1

Views

Author

Keywords

Comments

List the natural numbers: 1, 2, 3, 4, 5, 6, 7, ... . Keep the first number (1), delete the next two numbers (2, 3), keep the next three numbers (4, 5, 6), delete the next four numbers (7, 8, 9, 10) and so on.
a(A000290(n)) = A000384(n). - Reinhard Zumkeller, Feb 12 2011
A057211(a(n)) = 1. - Reinhard Zumkeller, Dec 30 2011
Numbers k with the property that the smallest Dyck path of the symmetric representation of sigma(k) has a central valley. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
Union of nonzero terms of A000384 and A317304. - Omar E. Pol, Aug 29 2018
The values of k such that, in a listing of all congruence classes of positive integers, the k-th congruence class contains k. Here the class r mod m (with r in {1,...,m}) precedes the class r' mod m' (with r' in {1,...,m'}) iff mA360418. - James Propp, Feb 10 2023

Examples

			From _Omar E. Pol_, Aug 29 2018: (Start)
Written as an irregular triangle in which the row lengths are the odd numbers the sequence begins:
    1;
    4,   5,   6;
   11,  12,  13,  14,  15;
   22,  23,  24,  25,  26,  27,  28;
   37,  38,  39,  40,  41,  42,  43,  44,  45;
   56,  57,  58,  59,  60,  61,  62 , 63,  64,  65,  66;
   79,  80,  81,  82 , 83,  84,  85,  86,  87,  88,  89,  90,  91;
  106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120;
...
Row sums give A005917.
Column 1 gives A084849.
Column 2 gives A096376, n >= 1.
Right border gives A000384, n >= 1.
(End)
		

References

  • C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I, Erhus Publ., Glendale, 1994.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 177.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Properties of Numbers, 1972.

Crossrefs

Programs

  • Haskell
    a007606 n = a007606_list !! (n-1)
    a007606_list = takeSkip 1 [1..] where
       takeSkip k xs = take k xs ++ takeSkip (k + 2) (drop (2*k + 1) xs)
    -- Reinhard Zumkeller, Feb 12 2011
  • Mathematica
    Flatten[ Table[i, {j, 1, 17, 2}, {i, j(j - 1)/2 + 1, j(j + 1)/2}]] (* Robert G. Wilson v, Mar 11 2004 *)
    Join[{1},Flatten[With[{nn=20},Range[#[[1]],Total[#]]&/@Take[Thread[ {Accumulate[ Range[nn]]+1,Range[nn]}],{2,-1,2}]]]] (* Harvey P. Dale, Jun 23 2013 *)
    With[{nn=20},Take[TakeList[Range[(nn(nn+1))/2],Range[nn]],{1,nn,2}]]//Flatten (* Harvey P. Dale, Feb 10 2023 *)
  • PARI
    for(n=1,66,m=sqrtint(n-1);print1(n+m*(m+1),","))
    

Formula

a(n) = n + m*(m+1) where m = floor(sqrt(n-1)). - Klaus Brockhaus, Mar 26 2004
a(n+1) = a(n) + if n=k^2 then 2*k+1 else 1; a(1) = 1. - Reinhard Zumkeller, May 13 2009

A100035 a(n+1) occurs not earlier as a neighbor of terms = a(n): either it is the greatest number < a(n) or, if no such number exists, the smallest number > a(n); a(1) = 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 3, 5, 4, 2, 5, 1, 6, 5, 7, 6, 4, 7, 3, 6, 2, 7, 1, 8, 7, 9, 8, 6, 9, 5, 8, 4, 9, 3, 8, 2, 9, 1, 10, 9, 11, 10, 8, 11, 7, 10, 6, 11, 5, 10, 4, 11, 3, 10, 2, 11, 1, 12, 11, 13, 12, 10, 13, 9, 12, 8, 13, 7, 12, 6, 13, 5, 12, 4, 13, 3, 12, 2, 13, 1, 14, 13, 15, 14, 12, 15, 11, 14, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

The natural numbers (A000027) occur infinitely many times as disjoint subsequences, see the example below and A100036, A100037, A100038 and A100039: exactly one k exists for all x < y such that a(k) = x and (a(k-1) = y or a(k+1) = y).
a(2*k^2 + k + 1) = a(A084849(k)) = 1 for k >= 0;
a(2*k^2 - 3*k) = a(A014107(k)) = 2 for k > 1;
a(2*k^2 + 5*k) = a(A033537(k)) = 3 for k > 1;
a(2*k^2 + k - 5) = a(A100040(k)) = 4 for k > 2;
a(2*k^2 + k - 7) = a(A100041(k)) = 5 for k > 3.

Examples

			First terms (10 = A, 11 = B, 12 = C) and some subsequences = A000027:
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1CBD
123.4.5....6.7........8.9............A.B................C.D.
...1....2........3............4................5..........
..........1........2............3................4......
.....................1............2................3....
		

Crossrefs

A255741 Square array read by antidiagonals upwards: T(n,k), n>=1, k>=1, in which row n lists the partial sums of the n-th row of the square array of A255740.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 3, 1, 1, 5, 7, 7, 4, 1, 1, 6, 9, 13, 9, 4, 1, 1, 7, 11, 21, 16, 11, 4, 1, 1, 8, 13, 31, 25, 22, 13, 4, 1, 1, 9, 15, 43, 36, 37, 28, 15, 5, 1, 1, 10, 17, 57, 49, 56, 49, 40, 17, 5, 1, 1, 11, 19, 73, 64, 79, 76, 85, 43, 19, 5, 1, 1, 12, 21, 91, 81, 106, 109, 156, 89, 49, 21, 5, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 05 2015

Keywords

Examples

			The corner of the square array with the first 15 terms of the first 12 rows looks like this:
-------------------------------------------------------------------------
A000012: 1, 1, 1,  1,  1,  1,  1,   1,   1,   1,   1,   1,   1,   1,   1
A070941: 1, 2, 3,  3,  4,  4,  4,   4,   5,   5,   5,   5,   5,   5,   5
A005408: 1, 3, 5,  7,  9, 11, 13,  15,  17,  19,  21,  23,  25,  27,  29
A151788: 1, 4, 7, 13, 16, 22, 28,  40,  43,  49,  55,  67,  73,  85,  97
A147562: 1, 5, 9, 21, 25, 37, 49,  85,  89, 101, 113, 149, 161, 197, 233
A151790: 1, 6,11, 31, 36, 56, 76, 156, 161, 181, 201, 281, 301, 381, 461
A151781: 1, 7,13, 43, 49, 79,109, 259, 265, 295, 325, 475, 505, 655, 805
A151792: 1, 8,15, 57, 64,106,148, 400, 407, 449, 491, 743, 785,1037,1289
A151793: 1, 9,17, 73, 81,137,193, 585, 593, 649, 705,1097,1153,1545,1937
A255764: 1,10,19, 91,100,172,244, 820, 829, 901, 973,1549,1621,2197,2773
A255765: 1,11,21,111,121,211,301,1111,1121,1211,1301,2111,2201,3011,3821
A255766: 1,12,23,133,144,254,364,1464,1475,1585,1695,2795,2905,4005,5105
...
		

Crossrefs

A100036 a(n) = smallest m such that A100035(m) = n.

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 14, 23, 25, 38, 40, 57, 59, 80, 82, 107, 109, 138, 140, 173, 175, 212, 214, 255, 257, 302, 304, 353, 355, 408, 410, 467, 469, 530, 532, 597, 599, 668, 670, 743, 745, 822, 824, 905, 907, 992, 994, 1083, 1085, 1178, 1180, 1277, 1279, 1380
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2004

Keywords

Comments

Smallest positions of occurrences of the natural numbers as subsequence in A100035;
A100035(a(n)) = n and A100035(m) <> n for m < a(n);
a(n) < A100037(n) < A100038(n) < A100039(n).

Examples

			First terms (10=A,11=B,12=C) of A100035(a(n)):
123.4.5....6.7........8.9............A.B................C.
1231435425165764736271879869584938291A9BA8B7A6B5A4B3A2B1CBD;
a(1) = A084849(1) = 1, A100035(1) = 1;
a(2) = A014107(1) = 2, A100035(2) = 2;
a(3) = A033537(1) = 3, A100035(3) = 3;
a(4) = A100040(1) = 5, A100035(5) = 4;
a(5) = A100041(1) = 7, A100035(7) = 5.
		

Formula

Conjecture: a(n) = partial sums of sequence [1,1,1,2,2,5,2,9,2,13,2,17,2,21,2,25,2,29,2,33,...2,n/2-7,2,...]. In other words, a(n) consists of the numbers 1,2,3 and the sequences A096376 and A096376+2 interspersed. - Ralf Stephan, May 15 2007

A134082 Triangle read by rows, (n-1) zeros followed by (2n, 1).

Original entry on oeis.org

1, 2, 1, 0, 4, 1, 0, 0, 6, 1, 0, 0, 0, 8, 1, 0, 0, 0, 0, 10, 1, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 0, 0, 16, 1, 0, 0, 0, 0, 0, 0, 0, 0, 18, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 1
Offset: 0

Views

Author

Gary W. Adamson, Oct 07 2007

Keywords

Comments

A134082 * [1,2,3,...] = A084849: (1, 4, 11, 22, 37, ...).
Binomial transform of A134082 = A134083.
A112295 replaces subdiagonal with (-1,-3,-5, ...).

Examples

			First few rows of the triangle:
  1;
  2,  1;
  0,  4,  1;
  0,  0,  6,  1;
  0,  0,  0,  8,  1;
  0,  0,  0,  0, 10,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A134082:= func< n,k | k eq n select 1 else k eq n-1 select 2*n else 0 >;
    [A134082(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_]:= If[k==n, 1, If[k==n-1, 2*n, 0]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 17 2021 *)
  • Sage
    def A134082(n,k): return 1 if k==n else 2*n if k==n-1 else 0
    flatten([[A134082(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Feb 17 2021
    

Formula

Triangle read by rows, (n-1) zeros followed by (2n, 1). As an infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (2,4,6,8,...) in the subdiagonal.
From formalism in A132382, e.g.f. = I_o[2*(u*x)^(1/2)] (1+2x) where I_o is the zeroth modified Bessel function of the first kind, i.e., I_o[2*(u*x)^(1/2)] = Sum_{j>=0} u^j/j! * x^j/j!. - Tom Copeland, Dec 07 2007
Row polynomial e.g.f.: exp(x*y)(1+2x). - Tom Copeland, Dec 03 2013
Sum_{k=0..n} T(n,k) = 2*n+1 = A005408(n). - G. C. Greubel, Feb 17 2021

Extensions

More terms added by G. C. Greubel, Feb 17 2021

A177342 a(n) = (4*n^3-3*n^2+5*n-3)/3.

Original entry on oeis.org

1, 9, 31, 75, 149, 261, 419, 631, 905, 1249, 1671, 2179, 2781, 3485, 4299, 5231, 6289, 7481, 8815, 10299, 11941, 13749, 15731, 17895, 20249, 22801, 25559, 28531, 31725, 35149, 38811, 42719, 46881, 51305, 55999, 60971, 66229, 71781, 77635
Offset: 1

Views

Author

Bruno Berselli, May 06 2010 - Nov 27 2010

Keywords

Comments

This sequence is related to the fourth powers (A000583) by n^4 = n*a(n) - Sum_{i=1..n-1} a(i) - (n-1), with n>1.
Also, n*a(n) - Sum_{i=1..n-1} a(i) provides the first column of A162624 and the second column of A162622 (or A162623). - Bruno Berselli, revised Dec 14 2012

Crossrefs

First differences: 2*A084849.
Partial sums: A178073.

Programs

  • Magma
    [(4*n^3-3*n^2+5*n-3)/3: n in [1..39]]; // Bruno Berselli, Aug 24 2011
    
  • Magma
    I:=[1,9,31,75]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 19 2013
  • Mathematica
    CoefficientList[Series[(1 + 5 x + x^2 + x^3) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 19 2013 *)
    Table[(4 n^3 - 3 n^2 + 5 n - 3)/3, {n, 1, 40}] (* Bruno Berselli, Feb 17 2015 *)
    LinearRecurrence[{4,-6,4,-1},{1,9,31,75},40] (* Harvey P. Dale, Jul 31 2021 *)
  • PARI
    a(n)=(4*n^3-3*n^2+5*n-3)/3 \\ Charles R Greathouse IV, Jun 23 2011
    

Formula

G.f.: x*(1 + 5*x + x^2 + x^3)/(1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) - a(-n) = 2*A004006(2n).
a(n) + a(-n) = -A002522(n).
a(n) = 1 + (n-1)*(4*n^2+n+6)/3 = 2*A174723(n)-1.

Extensions

Formulae added and revised by Bruno Berselli, Feb 17 2015

A174723 a(n) = n*(4*n^2 - 3*n + 5)/6.

Original entry on oeis.org

1, 5, 16, 38, 75, 131, 210, 316, 453, 625, 836, 1090, 1391, 1743, 2150, 2616, 3145, 3741, 4408, 5150, 5971, 6875, 7866, 8948, 10125, 11401, 12780, 14266, 15863, 17575, 19406, 21360, 23441, 25653, 28000, 30486, 33115, 35891, 38818, 41900, 45141
Offset: 1

Views

Author

Michel Lagneau, Mar 28 2010

Keywords

Comments

We prove that a(n) = Sum_{k=1..n^2} floor(sqrt(k)): a(n) = Sum_{k=1..3} 1 + Sum_{k=4..8} 2 + ... + Sum_{k=(n-1)^2..n^2 - 1} (n-1) + n = 3*1 + 5*2 + 7*3 + ... + (2n-1)(n-1)+ n = Sum_{k=1..n} (2k-1)*(k-1) + n = 2*Sum_{k=1..n} k^2 - 3*Sum_{k=1..n} k + 2n = 2n(n+1)(2n+1)/6 - 3n(n+1)/2 + 2n = n*(4n^2 - 3n + 5) / 6.
Notice that a(4) = 4 + 3*5 + 2*6 + 1*7 and a(8) = 8 + 7*9 + 6*10 + 5*11 + 4*12 + 3*13 + 2*14 + 1*15. In general, a(n) = n + Sum_{k=1..n-1} (n-k)*(n+k). - J. M. Bergot, Jul 31 2013

Examples

			From _Bruno Berselli_, Feb 17 2015: (Start)
Third differences:  1, 2,  4,  4,   4,   4,   4, (repeat 4) ... (A151798)
Second differences: 1, 3,  7, 11,  15,  19,  23,  27,   31, ... (A131098)
First differences:  1, 4, 11, 22,  37,  56,  79, 106,  137, ... (A084849)
-------------------------------------------------------------------------
This sequence:      1, 5, 16, 38,  75, 131, 210, 316,  453, ...
-------------------------------------------------------------------------
Partial sums:       1, 6, 22, 60, 135, 266, 476, 792, 1245, ... (A071239)
(End)
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Oxford Univ. Press, 1954.

Crossrefs

Programs

  • Magma
    I:=[1, 5, 16, 38]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
    
  • Maple
    A174723 := proc(n)
            n*(4*n^2-3*n+5)/6 ;
    end proc:
    seq( A174723(n),n=1..20) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[n (4n^2-3n+5)/6,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,5,16,38},50] (* Harvey P. Dale, Jan 16 2012 *)
  • PARI
    a(n)=n*(4*n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f. x*(1 + x + 2*x^2) / (x-1)^4. - R. J. Mathar, Nov 07 2011
a(1)=1, a(2)=5, a(3)=16, a(4)=38; for n > 4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jan 16 2012
a(n) = A022554(n^2). - Ridouane Oudra, Jun 13 2025

A370980 If n is even, (n^2-2*n+2)/2, otherwise (n^2-n+2)/2.

Original entry on oeis.org

1, 1, 1, 4, 5, 11, 13, 22, 25, 37, 41, 56, 61, 79, 85, 106, 113, 137, 145, 172, 181, 211, 221, 254, 265, 301, 313, 352, 365, 407, 421, 466, 481, 529, 545, 596, 613, 667, 685, 742, 761, 821, 841, 904, 925, 991, 1013, 1082, 1105, 1177, 1201, 1276, 1301, 1379, 1405, 1486, 1513, 1597, 1625, 1712, 1741, 1831, 1861, 1954
Offset: 0

Views

Author

Keywords

Comments

Total number of circles in A371373 and A371253, if in the later all the circular arcs are completed to form full circles.
The sequence also gives the number of vertices created from circle intersections when a circle of radius r is drawn around each of n equally spaced points on the circumference of a circle of radius r. The number of regions in these constructions is A093005(n) and the number of edges is A183207(n). See the attached images. - Scott R. Shannon, Jul 06 2024.

Examples

			a(n) = 1+n*floor((n-1)/2) = 1+n*A004526(n-1). - _Chai Wah Wu_, Mar 23 2024
		

Crossrefs

Programs

Formula

a(n) = A183207(n) - A093005(n) + 1, by Euler's formula. - Scott R. Shannon, Jul 07 2024

A317304 Numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have a central valley.

Original entry on oeis.org

4, 5, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1

Views

Author

Omar E. Pol, Aug 27 2018

Keywords

Comments

Also triangle read by rows which gives the even-indexed rows of triangle A014132.
There are no triangular number (A000217) in this sequence.
For more information about the symmetric representation of sigma see A237593 and its related sequences.
Equivalently, numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have an even number of peaks. - Omar E. Pol, Sep 13 2018

Examples

			Written as an irregular triangle in which the row lengths are the positive even numbers, the sequence begins:
    4,   5;
   11,  12,  13,  14;
   22,  23,  24,  25,  26,  27;
   37,  38,  39,  40,  41,  42,  43,  44;
   56,  57,  58,  59,  60,  61,  62,  63,  64,  65;
   79,  80,  81,  82,  83,  84,  85,  86,  87,  88,  89,  90;
  106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119;
...
Illustration of initial terms:
-------------------------------------------------
   k  sigma(k)  Diagram of the symmetry of sigma
-------------------------------------------------
                       _ _           _ _ _ _
                      | | |         | | | | |
                     _| | |         | | | | |
                 _ _|  _|_|         | | | | |
   4      7     |_ _ _|             | | | | |
   5      6     |_ _ _|             | | | | |
                                 _ _|_| | | |
                               _|    _ _|_| |
                             _|     |  _ _ _|
                            |      _|_|
                 _ _ _ _ _ _|  _ _|
  11     12     |_ _ _ _ _ _| |  _|
  12     28     |_ _ _ _ _ _ _| |
  13     14     |_ _ _ _ _ _ _| |
  14     24     |_ _ _ _ _ _ _ _|
.
For the first six terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central valley.
Compare with A317303.
		

Crossrefs

Row sums give A084367. n >= 1.
Column 1 gives A084849, n >= 1.
Column 2 gives A096376, n >= 1.
Right border gives the nonzero terms of A014106.
The union of A000217, A317303 and this sequence gives A001477.
Some other sequences related to the central peak or the central valley of the symmetric representation of sigma are A000217, A000384, A007606, A007607, A014105, A014132, A162917, A161983, A317303. See also A317306.
Previous Showing 11-20 of 41 results. Next