A209084
a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.
Original entry on oeis.org
0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
Offset: 0
- E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.
Cf.
A086344 (this sequence with signs).
-
I:=[0,4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
-
RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4}, a, {n, 30}]
LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
-
concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
A099133
4^(n-1)*Fibonacci(n).
Original entry on oeis.org
0, 1, 4, 32, 192, 1280, 8192, 53248, 344064, 2228224, 14417920, 93323264, 603979776, 3909091328, 25300041728, 163745628160, 1059783180288, 6859062771712, 44392781971456, 287316132233216, 1859549040476160, 12035254277636096, 77893801758162944
Offset: 0
G.f. = x + 4*x^2 + 32*x^3 + 192*x^4 + 1280*x^5 + 8192*x^6 + 53248*x^7 + ...
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivré Formula, March 2014; Preprint on ResearchGate.
-
Join[{a=0,b=1},Table[c=4*b+16*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Mar 29 2011*)
Table[4^(n-1) Fibonacci[n],{n,0,20}] (* Harvey P. Dale, Aug 22 2012 *)
LinearRecurrence[{4,16},{0,1},30] (* Harvey P. Dale, Aug 22 2012 *)
-
a(n) = 4^(n-1)*fibonacci(n); \\ Michel Marcus, Jan 10 2014
A109447
Binomial coefficients C(n,k) with n-k odd, read by rows.
Original entry on oeis.org
1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1
Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1, 3;
4, 4;
1, 10, 5;
6, 20, 6;
1, 21, 35, 7;
8, 56, 56, 8;
1, 36, 126, 84, 9;
10, 120, 252, 120, 10;
-
T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20); # Alois P. Heinz, Feb 07 2014
-
Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)
A272263
a(n) = numerator of A000032(n) - 1/2^n.
Original entry on oeis.org
1, 1, 11, 31, 111, 351, 1151, 3711, 12031, 38911, 125951, 407551, 1318911, 4268031, 13811711, 44695551, 144637951, 468058111, 1514668031, 4901568511, 15861809151, 51329892351, 166107021311, 537533612031, 1739495309311, 5629125066751, 18216231370751
Offset: 0
Numerators of a(0) =2-1=1, a(1)=1-1/2=1/2, a(2)=3-1/4=11/4, a(3)=4-1/8=31/8, ... .
-
CoefficientList[Series[(1 - 2*x + 6*x^2)/((1 - x)*(1 - 2*x - 4*x^2)), {x, 0, 30}], x] (* Robert Price, Apr 24 2016 *)
Table[Numerator[LucasL@ n - 1/2^n], {n, 0, 26}] (* Michael De Vlieger, Apr 24 2016 *)
-
Vec((1-2*x+6*x^2)/((1-x)*(1-2*x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 24 2016
A319053
a(n) is the exponent of the largest power of 2 that appears in the factorization of the entries in the matrix {{3,1},{1,-1}}^n.
Original entry on oeis.org
0, 1, 5, 3, 4, 8, 6, 7, 12, 9, 10, 15, 12, 13, 18, 15, 16, 20, 18, 19, 25, 21, 22, 28, 24, 25, 31, 27, 28, 32, 30, 31, 36, 33, 34, 39, 36, 37, 42, 39, 40, 44, 42, 43, 50, 45, 46, 53, 48, 49, 56, 51, 52, 56, 54, 55, 60, 57, 58, 63, 60, 61, 66, 63, 64, 68, 66, 67, 73, 69
Offset: 1
For n = 3, the matrix {{3,1},{1,-1}}^3 = {{32,8},{8,0}} and the largest power of 2 appearing in the factorization of any entry is 2^5 = 32. Hence, a(3) = 5.
- S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989, p. 73.
-
Join[{0, 1, 5}, Table[Max[ IntegerExponent[Flatten[MatrixPower[{{3, 1}, {1, -1}}, n]], 2]], {n, 4, 40}]]
-
a(n) = vecmax(apply(x->if (x, valuation(x, 2), 0), [3,1;1,-1]^n)); \\ Michel Marcus, Sep 09 2018
A319196
a(n) = 2^(n-1)*Fibonacci(n-3), n >= 0.
Original entry on oeis.org
1, -1, 2, 0, 8, 16, 64, 192, 640, 2048, 6656, 21504, 69632, 225280, 729088, 2359296, 7634944, 24707072, 79953920, 258736128, 837287936, 2709520384, 8768192512, 28374466560, 91821703168, 297141272576, 961569357824, 3111703805952, 10069685043200, 32586185310208, 105451110793216
Offset: 0
-
[2^(n-1)*Fibonacci(n-3): n in [0..30]]; // Vincenzo Librandi, Oct 09 2018
-
Table[2^(n-1) Fibonacci[n-3], {n, 0, 40}] (* Vincenzo Librandi, Oct 09 2018 *)
LinearRecurrence[{2,4},{1,-1},40] (* Harvey P. Dale, Mar 29 2020 *)
Comments