cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A209084 a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
Offset: 0

Views

Author

Seiichi Kirikami, Mar 06 2012

Keywords

Comments

a(n)/A063727(n) are convergents for A134972.
Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Cf. A086344 (this sequence with signs).

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
  • Mathematica
    RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4}, a, {n, 30}]
    LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
    

Formula

a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n).
G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012
a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012
Sum_{n>=1} 1/a(n) = (1/4) * A269991. - Amiram Eldar, Feb 01 2021

A099133 4^(n-1)*Fibonacci(n).

Original entry on oeis.org

0, 1, 4, 32, 192, 1280, 8192, 53248, 344064, 2228224, 14417920, 93323264, 603979776, 3909091328, 25300041728, 163745628160, 1059783180288, 6859062771712, 44392781971456, 287316132233216, 1859549040476160, 12035254277636096, 77893801758162944
Offset: 0

Views

Author

Paul Barry, Sep 29 2004

Keywords

Comments

Binomial transform of A099134.
Second binomial transform of x/(1-20x^2), or (0,1,0,20,0,400,0,8000,....).
In general k^(n-1)*Fibonacci(n) has g.f. x/(1-kx-k^2x^2).
The ratio a(n+1)/a(n) converges to 4 times the golden ratio as n approaches infinity. In general, the ratio a(n+1)/a(n) of the sequence which is the solution to the linear recurrence relation a(n) = m*a(n-1)+m^2*a(n-2) with a(0)=0 and a(1) = 1 converges to m times the golden ratio as n approaches infinity where m is a positive integer. - Felix P. Muga II, Mar 10 2014

Examples

			G.f. = x + 4*x^2 + 32*x^3 + 192*x^4 + 1280*x^5 + 8192*x^6 + 53248*x^7 + ...
		

References

  • F. P. Muga II, Extending the Golden Ratio and the Binet-de MoivrĂ© Formula, March 2014; Preprint on ResearchGate.

Crossrefs

Cf. A000045, A099012, A085449. Fourth row of A234357.

Programs

Formula

G.f.: x/(1-4*x-16*x^2).
a(n) = 4*a(n-1) + 16*a(n-2).
a(n) = (2+2*sqrt(5))^n/(4*sqrt(5))-(2-sqrt(5))^n/(4*sqrt(5)).
a(-n) = -(-1)^n * a(n) / 16^n for all n in Z. - Michael Somos, Mar 18 2014

A109447 Binomial coefficients C(n,k) with n-k odd, read by rows.

Original entry on oeis.org

1, 2, 1, 3, 4, 4, 1, 10, 5, 6, 20, 6, 1, 21, 35, 7, 8, 56, 56, 8, 1, 36, 126, 84, 9, 10, 120, 252, 120, 10, 1, 55, 330, 462, 165, 11, 12, 220, 792, 792, 220, 12, 1, 78, 715, 1716, 1287, 286, 13, 14, 364, 2002, 3432, 2002, 364, 14, 1, 105, 1365, 5005, 6435, 3003, 455, 15
Offset: 1

Views

Author

Philippe Deléham, Aug 27 2005

Keywords

Comments

The same as A119900 without 0's. A reflected version of A034867 or A202064. - Alois P. Heinz, Feb 07 2014
From Vladimir Shevelev, Feb 07 2014: (Start)
Also table of coefficients of polynomials P_1(x)=1, P_2(x)=2, for n>=2, P_(n+1)(x) = 2*P_n(x)+(x-1)* P_(n-1)(x). The polynomials P_n(x)/2^(n-1) are connected with sequences A000045 (x=5), A001045 (x=9), A006130 (x=13), A006131 (x=17), A015440 (x=21), A015441 (x=25), A015442 (x=29), A015443 (x=33), A015445 (x=37), A015446 (x=41), A015447 (x=45), A053404 (x=49); also the polynomials P_n(x) are connected with sequences A000129, A002605, A015518, A063727, A085449, A002532, A083099, A015519, A003683, A002534, A083102, A015520. (End)

Examples

			Starred terms in Pascal's triangle (A007318), read by rows:
1;
1*, 1;
1, 2*, 1;
1*, 3, 3*, 1;
1, 4*, 6, 4*, 1;
1*, 5, 10*, 10, 5*, 1;
1, 6*, 15, 20*, 15, 6*, 1;
1*, 7, 21*, 35, 35*, 21, 7*, 1;
1, 8*, 28, 56*, 70, 56*, 28, 8*, 1;
1*, 9, 36*, 84, 126*, 126, 84*, 36, 9*, 1;
Triangle T(n,k) begins:
1;
2;
1,    3;
4,    4;
1,   10,  5;
6,   20,  6;
1,   21,  35,   7;
8,   56,  56,   8;
1,   36, 126,  84,  9;
10, 120, 252, 120, 10;
		

Crossrefs

Cf. A109446.

Programs

  • Maple
    T:= (n, k)-> binomial(n, 2*k+1-irem(n, 2)):
    seq(seq(T(n, k), k=0..ceil((n-2)/2)), n=1..20);  # Alois P. Heinz, Feb 07 2014
  • Mathematica
    Flatten[ Table[ If[ OddQ[n - k], Binomial[n, k], {}], {n, 0, 15}, {k, 0, n}]] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Aug 30 2005
Corrected offset by Alois P. Heinz, Feb 07 2014

A272263 a(n) = numerator of A000032(n) - 1/2^n.

Original entry on oeis.org

1, 1, 11, 31, 111, 351, 1151, 3711, 12031, 38911, 125951, 407551, 1318911, 4268031, 13811711, 44695551, 144637951, 468058111, 1514668031, 4901568511, 15861809151, 51329892351, 166107021311, 537533612031, 1739495309311, 5629125066751, 18216231370751
Offset: 0

Views

Author

Paul Curtz, Apr 24 2016

Keywords

Comments

A000032(n), Lucas numbers, and 1/2^n are autosequences of the second kind.
Then a(n)/2^n is also an autosequence of the second kind.
Their corresponding autosequences of the first kind are A000045(n) and n/2^n, the Oresme numbers.
Difference table of A000032(n) - 1/2^n:
1, 1/2, 11/4, 31/8, 111/16, 351/32, 1151/64, ...
9/4, 9/8, 49/16, 129/32, 449/64, 1409/128, ...
31/16, 31/32, 191/64, 511/128, 1791/256, ...
129/64, 129/128, 769/256, ...
511/256, 511/256, ...
2049/1024, ... .
The first upper diagonal is A140323(n)/A004171(n). The main diagonal is the double, i.e. A140323(n)/A000302(n). The inverse binomial transform is the signed sequence.
Quintisections from a(2):
11, 31, 111, 351, 1151,
3711, 12031, 38911, 125951, 407551,
1318911, 4268031, 13811711, 44695551, 144637951,
etc.

Examples

			Numerators of a(0) =2-1=1, a(1)=1-1/2=1/2, a(2)=3-1/4=11/4, a(3)=4-1/8=31/8, ... .
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x + 6*x^2)/((1 - x)*(1 - 2*x - 4*x^2)), {x, 0, 30}], x] (* Robert Price, Apr 24 2016 *)
    Table[Numerator[LucasL@ n - 1/2^n], {n, 0, 26}] (* Michael De Vlieger, Apr 24 2016 *)
  • PARI
    Vec((1-2*x+6*x^2)/((1-x)*(1-2*x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 24 2016

Formula

a(n) = a(n-1) + 10*A085449(n), for n>0, a(0)=1.
a(n) = A087131(n) - 1.
From Colin Barker, Apr 24 2016: (Start)
a(n) = (-1+(1-sqrt(5))^n+(1+sqrt(5))^n).
a(n) = 3*a(n-1)+2*a(n-2)-4*a(n-3) for n>2.
G.f.: (1-2*x+6*x^2) / ((1-x)*(1-2*x-4*x^2)).
(End)

A319053 a(n) is the exponent of the largest power of 2 that appears in the factorization of the entries in the matrix {{3,1},{1,-1}}^n.

Original entry on oeis.org

0, 1, 5, 3, 4, 8, 6, 7, 12, 9, 10, 15, 12, 13, 18, 15, 16, 20, 18, 19, 25, 21, 22, 28, 24, 25, 31, 27, 28, 32, 30, 31, 36, 33, 34, 39, 36, 37, 42, 39, 40, 44, 42, 43, 50, 45, 46, 53, 48, 49, 56, 51, 52, 56, 54, 55, 60, 57, 58, 63, 60, 61, 66, 63, 64, 68, 66, 67, 73, 69
Offset: 1

Views

Author

Greg Dresden, Sep 09 2018

Keywords

Comments

a(n) appears to equal n-1 for n not a multiple of 3.
The matrix entries of M^n, with n >= 0, are M^n(1, 1) = 2^(n-1)*F(n+3) = A063782(n), M^n(2, 2) = 2^(n-1)*F(n-3) = A319196(n), M^n(1, 2) = M^n(2, 1) = 2^(n-1)*F(n) = A085449(n), where i = sqrt(-1), F = A000045, and F(-1) = 1, F(-2) = -1, F(-3) = 2. Proof by Cayley-Hamilton, with S(n, -i) = (-i)^n*F(n+1), where S(n, x) is given in A049310. - Wolfdieter Lang, Oct 08 2018
The above conjecture is true. From the preceding formulas for the elements of M^n this claims that the Fibonacci numbers F(n-3), F(n) and F(n+3) are always odd for n == 1 or 2 (mod 3). This is true because F(n) is even iff n == 0 (mod 3) (see e.g. Vajda, p.73), and each of the three indices is == 1 or 2 (mod 3) for n == 1 or 2 (mod 3), respectively. - Wolfdieter Lang, Oct 09 2018

Examples

			For n = 3, the matrix {{3,1},{1,-1}}^3 = {{32,8},{8,0}} and the largest power of 2 appearing in the factorization of any entry is 2^5 = 32. Hence, a(3) = 5.
		

References

  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989, p. 73.

Crossrefs

Programs

  • Mathematica
    Join[{0, 1, 5}, Table[Max[ IntegerExponent[Flatten[MatrixPower[{{3, 1}, {1, -1}}, n]], 2]], {n, 4, 40}]]
  • PARI
    a(n) = vecmax(apply(x->if (x, valuation(x, 2), 0), [3,1;1,-1]^n)); \\ Michel Marcus, Sep 09 2018

A319196 a(n) = 2^(n-1)*Fibonacci(n-3), n >= 0.

Original entry on oeis.org

1, -1, 2, 0, 8, 16, 64, 192, 640, 2048, 6656, 21504, 69632, 225280, 729088, 2359296, 7634944, 24707072, 79953920, 258736128, 837287936, 2709520384, 8768192512, 28374466560, 91821703168, 297141272576, 961569357824, 3111703805952, 10069685043200, 32586185310208, 105451110793216
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2018

Keywords

Comments

This sequence gives the elements M^n(2, 2) of the matrix M = [[3, 1], [1, -1]].
Motivation to look into these matrix powers came from A319053. M^n[1, 1] = A063782 and M^n(1, 2) = M^n(2, 1) = A085449(n). Proof by Cayley-Hamilton, using S(n, -I) = (-I)^n*F(n+1), and S(n, x) from A049310 and F = A000045.
For a similar signed sequence see A087205.

Crossrefs

Programs

  • Magma
    [2^(n-1)*Fibonacci(n-3): n in [0..30]]; // Vincenzo Librandi, Oct 09 2018
  • Mathematica
    Table[2^(n-1) Fibonacci[n-3], {n, 0, 40}] (* Vincenzo Librandi, Oct 09 2018 *)
    LinearRecurrence[{2,4},{1,-1},40] (* Harvey P. Dale, Mar 29 2020 *)

Formula

a(n) = 2^(n-1)*F(n-3), n >= 0, with F = A000045 with F(-1) = 1, F(-2) = -1 and F(-3) = 1.
G.f.: (1-3*x)/(1-2*x-(2*x)^2).
a(n) = 2*(a(n-1) + 2*a(n-2)), n >= 2, with a(0) = 1 and a(1) = -1.
a(n) = 2^(n-1)*(phi^(n-3) - (1 - phi)^(n-3))/(2*phi - 1) with the golden section phi = A001622.
Previous Showing 11-16 of 16 results.