A339114
Least semiprime whose prime indices sum to n.
Original entry on oeis.org
4, 6, 9, 14, 21, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 2
The sequence of terms together with their prime indices begins:
4: {1,1} 106: {1,16} 254: {1,31}
6: {1,2} 118: {1,17} 262: {1,32}
9: {2,2} 122: {1,18} 274: {1,33}
14: {1,4} 134: {1,19} 278: {1,34}
21: {2,4} 142: {1,20} 298: {1,35}
26: {1,6} 146: {1,21} 302: {1,36}
34: {1,7} 158: {1,22} 314: {1,37}
38: {1,8} 166: {1,23} 326: {1,38}
46: {1,9} 178: {1,24} 334: {1,39}
58: {1,10} 194: {1,25} 346: {1,40}
62: {1,11} 202: {1,26} 358: {1,41}
74: {1,12} 206: {1,27} 362: {1,42}
82: {1,13} 214: {1,28} 382: {1,43}
86: {1,14} 218: {1,29} 386: {1,44}
94: {1,15} 226: {1,30} 394: {1,45}
A024697 is the sum of the same semiprimes.
A098350 has this sequence as antidiagonal minima.
A338904 has this sequence as row minima.
A339114 (this sequence) is the squarefree case for n > 4.
A339115 is the greatest among the same semiprimes.
A037143 lists primes and semiprimes.
A056239 gives the sum of prime indices of n.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
-
Table[Min@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
Take[DeleteDuplicates[SortBy[{Times@@#,Total[PrimePi[#]]}&/@Tuples[ Prime[ Range[ 200]],2],{Last,First}],GreaterEqual[#1[[2]],#2[[2]]]&][[All,1]],60] (* Harvey P. Dale, Sep 06 2022 *)
-
a(n) = vecmin(vector(n-1, k, prime(k)*prime(n-k))); \\ Michel Marcus, Dec 03 2020
A339116
Triangle of all squarefree semiprimes grouped by greater prime factor, read by rows.
Original entry on oeis.org
6, 10, 15, 14, 21, 35, 22, 33, 55, 77, 26, 39, 65, 91, 143, 34, 51, 85, 119, 187, 221, 38, 57, 95, 133, 209, 247, 323, 46, 69, 115, 161, 253, 299, 391, 437, 58, 87, 145, 203, 319, 377, 493, 551, 667, 62, 93, 155, 217, 341, 403, 527, 589, 713, 899
Offset: 2
Triangle begins:
6
10 15
14 21 35
22 33 55 77
26 39 65 91 143
34 51 85 119 187 221
38 57 95 133 209 247 323
46 69 115 161 253 299 391 437
58 87 145 203 319 377 493 551 667
62 93 155 217 341 403 527 589 713 899
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A339195 is the generalization to all squarefree numbers, row sums
A339360.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Prime[i]*Prime[j],{i,2,10},{j,i-1}]
-
row(n) = {prime(n)*primes(n-1)}
{ for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
A338906
Semiprimes whose prime indices sum to an even number.
Original entry on oeis.org
4, 9, 10, 21, 22, 25, 34, 39, 46, 49, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 121, 129, 133, 134, 146, 155, 159, 166, 169, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 289, 295, 298, 301, 303, 314, 321, 334, 335, 339
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1} 87: {2,10} 183: {2,18} 274: {1,33}
9: {2,2} 91: {4,6} 187: {5,7} 289: {7,7}
10: {1,3} 94: {1,15} 194: {1,25} 295: {3,17}
21: {2,4} 111: {2,12} 203: {4,10} 298: {1,35}
22: {1,5} 115: {3,9} 205: {3,13} 301: {4,14}
25: {3,3} 118: {1,17} 206: {1,27} 303: {2,26}
34: {1,7} 121: {5,5} 213: {2,20} 314: {1,37}
39: {2,6} 129: {2,14} 218: {1,29} 321: {2,28}
46: {1,9} 133: {4,8} 235: {3,15} 334: {1,39}
49: {4,4} 134: {1,19} 237: {2,22} 335: {3,19}
55: {3,5} 146: {1,21} 247: {6,8} 339: {2,30}
57: {2,8} 155: {3,11} 253: {5,9} 341: {5,11}
62: {1,11} 159: {2,16} 254: {1,31} 358: {1,41}
82: {1,13} 166: {1,23} 259: {4,12} 361: {8,8}
85: {3,7} 169: {6,6} 267: {2,24} 365: {3,21}
A031215 looks at primes instead of semiprimes.
A098350 has this as union of even-indexed antidiagonals.
A300061 looks at all numbers (not just semiprimes).
A338904 has this as union of even-indexed rows.
A056239 gives the sum of prime indices (Heinz weight).
A087112 groups semiprimes by greater factor.
A338911 lists products of pairs of primes both of even index.
Cf.
A000040,
A001222,
A024697,
A037143,
A112798,
A300063,
A319242,
A320655,
A332765,
A338910,
A339004.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],PrimeOmega[#]==2&&EvenQ[Total[primeMS[#]]]&]
-
from math import isqrt
from sympy import primepi, primerange
def A338906(n):
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
kmin = kmax >> 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return n+x-sum((primepi(x//p)-a>>1) for a,p in enumerate(primerange(isqrt(x)+1),-1))
return bisection(f,n,n) # Chai Wah Wu, Apr 03 2025
A338905
Irregular triangle read by rows where row n lists all squarefree semiprimes with prime indices summing to n.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 26, 33, 35, 34, 39, 55, 38, 51, 65, 77, 46, 57, 85, 91, 58, 69, 95, 119, 143, 62, 87, 115, 133, 187, 74, 93, 145, 161, 209, 221, 82, 111, 155, 203, 247, 253, 86, 123, 185, 217, 299, 319, 323, 94, 129, 205, 259, 341, 377, 391, 106, 141
Offset: 3
Triangle begins:
6
10
14 15
21 22
26 33 35
34 39 55
38 51 65 77
46 57 85 91
58 69 95 119 143
62 87 115 133 187
74 93 145 161 209 221
82 111 155 203 247 253
86 123 185 217 299 319 323
A004526 (shifted right) gives row lengths.
A025129 (shifted right) gives row sums.
A056239 gives sum of prime indices (Heinz weight).
A339116 is a different triangle whose diagonals are these rows.
A338904 is the not necessarily squarefree version, with row sums
A024697.
A087112 groups semiprimes by greater factor.
A168472 gives partial sums of squarefree semiprimes.
Cf.
A000040,
A001221,
A014342,
A098350,
A112798,
A320656,
A338901,
A338906,
A339003,
A339004,
A339005,
A339115.
-
Table[Sort[Table[Prime[k]*Prime[n-k],{k,(n-1)/2}]],{n,3,10}]
A339115
Greatest semiprime whose prime indices sum to n.
Original entry on oeis.org
4, 6, 10, 15, 25, 35, 55, 77, 121, 143, 187, 221, 289, 323, 391, 493, 551, 667, 841, 899, 1073, 1189, 1369, 1517, 1681, 1763, 1961, 2183, 2419, 2537, 2809, 3127, 3481, 3599, 3953, 4189, 4489, 4757, 5041, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633
Offset: 2
The sequence of terms together with their prime indices begins:
4: {1,1} 493: {7,10} 2809: {16,16}
6: {1,2} 551: {8,10} 3127: {16,17}
10: {1,3} 667: {9,10} 3481: {17,17}
15: {2,3} 841: {10,10} 3599: {17,18}
25: {3,3} 899: {10,11} 3953: {17,19}
35: {3,4} 1073: {10,12} 4189: {17,20}
55: {3,5} 1189: {10,13} 4489: {19,19}
77: {4,5} 1369: {12,12} 4757: {19,20}
121: {5,5} 1517: {12,13} 5041: {20,20}
143: {5,6} 1681: {13,13} 5293: {19,22}
187: {5,7} 1763: {13,14} 5723: {17,25}
221: {6,7} 1961: {12,16} 5963: {19,24}
289: {7,7} 2183: {12,17} 6499: {19,25}
323: {7,8} 2419: {13,17} 6887: {20,25}
391: {7,9} 2537: {14,17} 7171: {20,26}
A024697 is the sum of the same semiprimes.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A037143 lists primes and semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
Cf.
A000040,
A001221,
A001222,
A014342,
A025129,
A056239,
A062198,
A098350,
A112798,
A338905,
A339116.
-
P:= [seq(ithprime(i),i=1..200)]:
[seq(max(seq(P[i]*P[j-i],i=1..j-1)),j=2..200)]; # Robert Israel, Dec 06 2020
-
Table[Max@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
A338908
Squarefree semiprimes whose prime indices sum to an even number.
Original entry on oeis.org
10, 21, 22, 34, 39, 46, 55, 57, 62, 82, 85, 87, 91, 94, 111, 115, 118, 129, 133, 134, 146, 155, 159, 166, 183, 187, 194, 203, 205, 206, 213, 218, 235, 237, 247, 253, 254, 259, 267, 274, 295, 298, 301, 303, 314, 321, 334, 335, 339, 341, 358, 365, 371, 377, 382
Offset: 1
The sequence of terms together with their prime indices begins:
10: {1,3} 115: {3,9} 213: {2,20}
21: {2,4} 118: {1,17} 218: {1,29}
22: {1,5} 129: {2,14} 235: {3,15}
34: {1,7} 133: {4,8} 237: {2,22}
39: {2,6} 134: {1,19} 247: {6,8}
46: {1,9} 146: {1,21} 253: {5,9}
55: {3,5} 155: {3,11} 254: {1,31}
57: {2,8} 159: {2,16} 259: {4,12}
62: {1,11} 166: {1,23} 267: {2,24}
82: {1,13} 183: {2,18} 274: {1,33}
85: {3,7} 187: {5,7} 295: {3,17}
87: {2,10} 194: {1,25} 298: {1,35}
91: {4,6} 203: {4,10} 301: {4,14}
94: {1,15} 205: {3,13} 303: {2,26}
111: {2,12} 206: {1,27} 314: {1,37}
A031215 looks at primes instead of semiprimes.
A300061 and
A319241 (squarefree) look all numbers (not just semiprimes).
A338905 has this as union of even-indexed rows.
A338906 is the nonsquarefree version.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A056239 gives the sum of prime indices of n.
A320656 counts factorizations into squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
A338911 lists products of pairs of primes both of even index.
A339116 groups squarefree semiprimes by greater prime factor.
Cf.
A000040,
A001221,
A001222,
A087112,
A098350,
A112798,
A168472,
A338901,
A338904,
A339004,
A339005.
A339194
Sum of all squarefree semiprimes with greater prime factor prime(n).
Original entry on oeis.org
0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1
The triangle A339116 with row sums equal to this sequence begins (n > 1):
6 = 6
25 = 10 + 15
70 = 14 + 21 + 35
187 = 22 + 33 + 55 + 77
A025129 gives sums of squarefree semiprimes by weight, row sums of
A338905.
A143215 is the not necessarily squarefree version, row sums of
A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
-
a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024
A370121
Triangle read by rows: T(n,k) = A002110(n) + A002110(k), 0 <= k <= n; sums of two primorials, not necessarily distinct.
Original entry on oeis.org
2, 3, 4, 7, 8, 12, 31, 32, 36, 60, 211, 212, 216, 240, 420, 2311, 2312, 2316, 2340, 2520, 4620, 30031, 30032, 30036, 30060, 30240, 32340, 60060, 510511, 510512, 510516, 510540, 510720, 512820, 540540, 1021020, 9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380, 223092871, 223092872
Offset: 0
Triangle begins as:
2;
3, 4;
7, 8, 12;
31, 32, 36, 60;
211, 212, 216, 240, 420;
2311, 2312, 2316, 2340, 2520, 4620;
30031, 30032, 30036, 30060, 30240, 32340, 60060;
510511, 510512, 510516, 510540, 510720, 512820, 540540, 1021020;
9699691, 9699692, 9699696, 9699720, 9699900, 9702000, 9729720, 10210200, 19399380;
Cf.
A177689 (same triangle without the right edge),
A370134 (without the leftmost column).
A373848
Numbers k such that k is not divisible by p^p for any prime p, and for which 1 < A373842(k) <= k, where A373842 is the arithmetic derivative of the primorial base log-function.
Original entry on oeis.org
5, 9, 15, 25, 30, 42, 45, 63, 75, 105, 110, 125, 126, 147, 150, 165, 175, 198, 210, 225, 231, 245, 275, 294, 315, 330, 343, 363, 375, 385, 441, 462, 495, 525, 539, 605, 625, 650, 686, 693, 726, 735, 750, 770, 825, 847, 875, 882, 990, 1029, 1050, 1089, 1125, 1155, 1170, 1190, 1210, 1225, 1250, 1331, 1375, 1386, 1430
Offset: 1
Cf.
A001222,
A003415,
A024451,
A087112,
A276085,
A276086,
A359550,
A369979,
A370129,
A370138,
A373842,
A373844,
A373845.
-
\\ Uses the code from A373842, or its precomputed data:
A359550(n) = { my(f = factor(n)); prod(k=1, #f~, (f[k, 2]A373848(n) = if(!A359550(n), 0, my(u=A373842(n)); ((1
-
A002620(n) = ((n^2)>>2);
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*prod(i=1,primepi(f[k, 1]-1),prime(i))); };
\\ The following routine checks that n is not a prime larger than five, is in A048103, and in case n is odd, rules out cases that certainly cannot give A373842(n) <= n:
prefilter_for_A373848(n) = if(n < 3 || (isprime(n) && n > 5), 0, my(f=factor(n), k=#f~, lpf=f[1,1], p=f[k,1], m=f[k,2]); for(i=1, k, if(f[i, 2]>=f[i, 1], return(0))); if(2==lpf, return(1)); while(p>lpf, p = precprime(p-1); m *= p; if(m>n, return(0))); (1));
isA373848(n) = if(!prefilter_for_A373848(n), 0, my(x=A276085(n)); if(x>A002620(n), 0, (!isprime(x) && A003415(x)<=n)));
A065342
Triangle of sum of two primes: prime(n)+prime(k) with n >= k >= 1.
Original entry on oeis.org
4, 5, 6, 7, 8, 10, 9, 10, 12, 14, 13, 14, 16, 18, 22, 15, 16, 18, 20, 24, 26, 19, 20, 22, 24, 28, 30, 34, 21, 22, 24, 26, 30, 32, 36, 38, 25, 26, 28, 30, 34, 36, 40, 42, 46, 31, 32, 34, 36, 40, 42, 46, 48, 52, 58, 33, 34, 36, 38, 42, 44, 48, 50, 54, 60, 62, 39, 40, 42, 44, 48
Offset: 1
Sequence starts 2+2; 3+2, 3+3; 5+2, 5+3, 5+5; etc. i.e. 4; 5,6; 7,8,10; ...
Triangle begins:
4;
5, 6;
7, 8, 10;
9, 10, 12, 14;
13, 14, 16, 18, 22;
...
-
import Data.List (inits)
a065342 n k = a065342_tabl !! (n-1) !! (k-1)
a065342_row n = a065342_tabl !! (n-1)
a065342_tabl = zipWith (map . (+)) a000040_list $ tail $ inits a000040_list
-- Reinhard Zumkeller, Aug 02 2015, Jan 30 2012
-
row(n) = vector(n, k, prime(n)+prime(k)); \\ Michel Marcus, Sep 10 2021
Comments