cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A052899 Expansion of g.f.: (1-2*x) / ((x-1)*(4*x^2+2*x-1)).

Original entry on oeis.org

1, 1, 5, 13, 45, 141, 461, 1485, 4813, 15565, 50381, 163021, 527565, 1707213, 5524685, 17878221, 57855181, 187223245, 605867213, 1960627405, 6344723661, 20531956941, 66442808525, 215013444813, 695798123725, 2251650026701, 7286492548301, 23579585203405, 76305140600013
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From L. Edson Jeffery, Apr 19 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A = A_(10,4) =
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n) = (1/5)*trace(A^n). (End)
a(n-1)+1 is the number of paths to reach a position outside a 4 X 4 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice. - Ruediger Jehn, Oct 10 2024

Crossrefs

Cf. A084057.

Programs

  • Magma
    [(1/5)*(2^(n+1)*Lucas(n)+1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Union(Z,Z)),Z,Z),Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-2x)/((x-1)(4x^2+2x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,-4},{1,1,5},40] (* Harvey P. Dale, Jul 10 2017 *)
  • Maxima
    makelist(coeff(taylor((1-2*x)/(1-3*x-2*x^2+4*x^3),x,0,n),x,n),n,0,25); /* Bruno Berselli, May 30 2011 */
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(1,1,2,4, lambda n:-1)
    [next(it) for i in range(1,28)] # Zerinvary Lajos, Jul 09 2008
    

Formula

Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 2*a(n+1) + a(n+2) + 1 = 0}.
a(n) = Sum((-1/25)*(-1-8*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z-2*_Z^2+4*_Z^3)).
a(n)/a(n-1) tends to (1 + sqrt(5)) = 3.236067... - Gary W. Adamson, Mar 01 2008
a(n) = (1/5) * Sum_{k=1..5} ((x_k)^4-3*(x_k)^2+1), x_k=2*cos((2*k-1)*Pi/10). Also, a(n)/a(n-1) -> spectral radius of matrix A_(10,4) above. - L. Edson Jeffery, Apr 19 2011
a(n) = (2*A087131(n)+1)/5. - Bruno Berselli, Apr 20 2011
a(n) = (2/5)*((1+sqrt(5))^n + (1-sqrt(5))^n + 1/2). - Ruediger Jehn, Sep 29 2024
E.g.f.: exp(x)*(1 + 4*cosh(sqrt(5)*x))/5. - Stefano Spezia, Oct 02 2024

Extensions

More terms from James Sellers, Jun 08 2000

A127220 a(n) = 3^n*tetranacci(n) or (2^n)*A001648(n).

Original entry on oeis.org

3, 27, 189, 1215, 6318, 37179, 216513, 1253151, 7223661, 41806692, 241805655, 1398221271, 8084811933, 46753521975, 270362105694, 1563413859999, 9040715391141, 52279683047127, 302316992442837, 1748203962973380, 10109314209860523, 58458991419115875
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215]; [n le 4 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81}, {3, 27, 189, 1215}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(108*x^3 +27*x^2 +6*x +1)/(81*x^4 +27*x^3 +9*x^2 +3*x -1)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3},{3,0,0,0},{0,3,0,0},{0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) + 27*a(n-3) + 81*a(n-4).
G.f.: -3*x*(108*x^3+27*x^2+6*x+1)/(81*x^4+27*x^3+9*x^2+3*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A127221 a(n) = 2^n*pentanacci(n) or (2^n)*A023424(n-1).

Original entry on oeis.org

2, 12, 56, 240, 992, 3648, 14464, 57088, 224768, 883712, 3471360, 13651968, 53682176, 211075072, 829915136, 3263102976, 12830244864, 50447253504, 198353354752, 779904614400, 3066503888896, 12057176965120, 47407572189184, 186401664532480, 732912043425792
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[2, 12, 56, 240, 992]; [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4) + 32*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8, 16, 32}, {2, 12, 56, 240, 992}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({2,2,2,2,2},{2,0,0,0,0},{0,2,0,0,0},{0,0,2,0,0},{0,0,0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009
a(n) = 2*a(n-1)+4*a(n-2)+8*a(n-3)+16*a(n-4)+32*a(n-5). - Colin Barker, Sep 02 2013

Extensions

Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A127222 a(n) = 3^n*pentanacci(n) or (3^n)*A023424(n-1).

Original entry on oeis.org

3, 27, 189, 1215, 7533, 41553, 247131, 1463103, 8640837, 50959287, 300264165, 1771292853, 10447598619, 61618989627, 363414767589, 2143339285311, 12641143135581, 74555586323649, 439717218548643, 2593383067853775, 15295369041550269, 90209719910309895
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215, 7533]; [n le 5 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4) + 243*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81, 243}, {3, 27, 189, 1215, 7533}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3,3},{3,0,0,0,0},{0,3,0,0,0},{0,0,3,0,0},{0,0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = 3*a(n-1)+9*a(n-2)+27*a(n-3)+81*a(n-4)+243*a(n-5). - Colin Barker, Sep 02 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A269992 Decimal expansion of Sum_{n>=1} 2^(1-n)/L(n), where L = A000032 (Lucas numbers).

Original entry on oeis.org

1, 2, 5, 5, 2, 2, 1, 1, 3, 4, 3, 2, 9, 8, 4, 8, 6, 0, 3, 1, 4, 0, 2, 6, 6, 7, 2, 7, 4, 4, 0, 3, 3, 6, 0, 1, 5, 6, 0, 5, 4, 3, 5, 7, 0, 4, 4, 4, 4, 3, 0, 0, 3, 8, 3, 6, 8, 8, 7, 0, 6, 2, 4, 1, 4, 9, 3, 0, 9, 6, 6, 8, 6, 0, 2, 5, 3, 8, 6, 3, 0, 8, 6, 8, 9, 0
Offset: 1

Views

Author

Clark Kimberling, Mar 12 2016

Keywords

Examples

			1.2552211343298486031402667274403360...
		

Crossrefs

Programs

  • Mathematica
    x = N[Sum[2^(1 - n)/LucasL[n], {n, 1, 500}], 100]
    RealDigits[x][[1]]
  • PARI
    L(n) = real((2 + quadgen(5)) * quadgen(5)^n); \\ A000032
    suminf(n=1, 2^(1-n)/L(n)) \\ Michel Marcus, Nov 17 2020

Formula

Equals Sum_{n>=1} 1/A084057(n) = 2 * Sum_{n>=1} 1/A087131(n). - Amiram Eldar, Feb 01 2021

A272263 a(n) = numerator of A000032(n) - 1/2^n.

Original entry on oeis.org

1, 1, 11, 31, 111, 351, 1151, 3711, 12031, 38911, 125951, 407551, 1318911, 4268031, 13811711, 44695551, 144637951, 468058111, 1514668031, 4901568511, 15861809151, 51329892351, 166107021311, 537533612031, 1739495309311, 5629125066751, 18216231370751
Offset: 0

Views

Author

Paul Curtz, Apr 24 2016

Keywords

Comments

A000032(n), Lucas numbers, and 1/2^n are autosequences of the second kind.
Then a(n)/2^n is also an autosequence of the second kind.
Their corresponding autosequences of the first kind are A000045(n) and n/2^n, the Oresme numbers.
Difference table of A000032(n) - 1/2^n:
1, 1/2, 11/4, 31/8, 111/16, 351/32, 1151/64, ...
9/4, 9/8, 49/16, 129/32, 449/64, 1409/128, ...
31/16, 31/32, 191/64, 511/128, 1791/256, ...
129/64, 129/128, 769/256, ...
511/256, 511/256, ...
2049/1024, ... .
The first upper diagonal is A140323(n)/A004171(n). The main diagonal is the double, i.e. A140323(n)/A000302(n). The inverse binomial transform is the signed sequence.
Quintisections from a(2):
11, 31, 111, 351, 1151,
3711, 12031, 38911, 125951, 407551,
1318911, 4268031, 13811711, 44695551, 144637951,
etc.

Examples

			Numerators of a(0) =2-1=1, a(1)=1-1/2=1/2, a(2)=3-1/4=11/4, a(3)=4-1/8=31/8, ... .
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x + 6*x^2)/((1 - x)*(1 - 2*x - 4*x^2)), {x, 0, 30}], x] (* Robert Price, Apr 24 2016 *)
    Table[Numerator[LucasL@ n - 1/2^n], {n, 0, 26}] (* Michael De Vlieger, Apr 24 2016 *)
  • PARI
    Vec((1-2*x+6*x^2)/((1-x)*(1-2*x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 24 2016

Formula

a(n) = a(n-1) + 10*A085449(n), for n>0, a(0)=1.
a(n) = A087131(n) - 1.
From Colin Barker, Apr 24 2016: (Start)
a(n) = (-1+(1-sqrt(5))^n+(1+sqrt(5))^n).
a(n) = 3*a(n-1)+2*a(n-2)-4*a(n-3) for n>2.
G.f.: (1-2*x+6*x^2) / ((1-x)*(1-2*x-4*x^2)).
(End)

A097632 a(n) = 2^n * Lucas(n) * (n-1)!.

Original entry on oeis.org

2, 12, 64, 672, 8448, 138240, 2672640, 60641280, 1568931840, 45705461760, 1478924697600, 52646746521600, 2044394156851200, 86005817907609600, 3896481847600742400, 189139342470414336000, 9793081532749971456000, 538748376721309827072000, 31381673358053118836736000
Offset: 1

Views

Author

Ralf Stephan, Aug 17 2004

Keywords

Comments

Number of possible well-colored cycles on n nodes. Well-colored means, each green vertex has at least a red child, each red vertex has no red child.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^n*LucasL[n,1]*(n-1)!; Array[a,19] (* or *)
    nmax=19; CoefficientList[Series[-Log[1-2x-4x^2], {x,0,nmax}], x]Range[0,nmax]! (* Stefano Spezia, Jan 15 2024 *)
  • Python
    def A097632(n):
        L0, L1, F, i = 1, 2, 2, 1
        while i < n:
            L0, L1, F, i = L0+L1, L0, 2*i*F, i+1
        return L0*F # A.H.M. Smeets, Jan 15 2024

Formula

E.g.f.: -log(1-2*x-4*x^2).
a(n) = A000204(n) * A066318(n).
a(n) ~ sqrt(2*Pi/n)*(2*n*phi/e)^n. - Stefano Spezia, Jan 16 2024

Extensions

Definition corrected by and a(18)-a(19) from Stefano Spezia, Jan 15 2024

A270445 Expansion of 2*x*(1+4*x) / (1-12*x+16*x^2).

Original entry on oeis.org

2, 32, 352, 3712, 38912, 407552, 4268032, 44695552, 468058112, 4901568512, 51329892352, 537533612032, 5629125066752, 58948963008512, 617321555034112, 6464675252273152, 67698958146732032, 708952693724413952, 7424248994345254912
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

If p is an odd prime, a((p+1)/2) == 2 mod p. In other words, a((p+1)/2) - 2^p is divisible by p where p is an odd prime.

Examples

			a(2) = 32 because (1 + sqrt(5))^3 + (1 - sqrt(5))^3 = 32.
		

Crossrefs

Programs

  • PARI
    Vec(2*x*(1+4*x)/(1-12*x+16*x^2) + O(x^50)) \\ Colin Barker, Mar 17 2016

Formula

a(n) = 12*a(n-1) - 16*a(n-2) for n>2. G.f.: 2*x*(1+4*x) / (1-12*x+16*x^2). - Colin Barker, Mar 17 2016
a(n) = (1+sqrt(5))^(2*n-1) + (1-sqrt(5))^(2*n-1).
Previous Showing 11-18 of 18 results.