cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A087290 Number of pairs of polynomials (f,g) in GF(3)[x] satisfying deg(f) <= n, deg(g) <= n and gcd(f,g) = 1.

Original entry on oeis.org

8, 56, 488, 4376, 39368, 354296, 3188648, 28697816, 258280328, 2324522936, 20920706408, 188286357656, 1694577218888, 15251194969976, 137260754729768, 1235346792567896, 11118121133111048, 100063090197999416, 900567811781994728, 8105110306037952536
Offset: 0

Views

Author

W. Edwin Clark, Aug 29 2003

Keywords

Comments

An unpublished result due to Stephen Suen, David desJardins, and W. Edwin Clark. This is the case k = 2, q = 3 of their formula q^((n+1)*k) * (1 - 1/q^(k-1) + (q-1)/q^((n+1)*k)) for the number of ordered k-tuples (f_1, ..., f_k) of polynomials in GF(q)[x] such that deg(f_i) <= n for all i and gcd(f_1, ..., f_k) = 1.

Examples

			a(0) = 8 since there are eight pairs, (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2) of polynomials (f,g) in GF(3)[x] of degree at most 0 such that gcd(f,g) = 1.
		

Crossrefs

Programs

  • Mathematica
    2*3^(2Range[0,30]+1)+2 (* or *) LinearRecurrence[{10,-9},{8,56},30] (* Harvey P. Dale, Mar 07 2012 *)

Formula

a(n) = 2*3^(2*n+1) + 2.
a(n) = 10*a(n-1) - 9*a(n-2), a(0)=8, a(1)=56. - Harvey P. Dale, Mar 07 2012
G.f.: 8*(1-3*x)/((1-x)*(1-9*x)). - Colin Barker, Apr 16 2012

Extensions

More terms from Harvey P. Dale, Mar 07 2012

A087291 Number of pairs of polynomials (f,g) in GF(2)[x] satisfying 1 <= deg(f) <= n, 1 <= deg(g) <= n and gcd(f,g) = 1.

Original entry on oeis.org

0, 2, 18, 98, 450, 1922, 7938, 32258, 130050, 522242, 2093058, 8380418, 33538050, 134184962, 536805378, 2147352578, 8589672450, 34359214082, 137437904898, 549753716738, 2199019061250
Offset: 0

Views

Author

W. Edwin Clark, Aug 29 2003

Keywords

Comments

Unpublished result due to Stephen Suen, David desJardins, and W. Edwin Clark. This is the case k = 2, q = 2 of their formula (q^(n+1)-q)^k*(1-1/(q^(k-1))) for the number of ordered k-tuples (f_1, ..., f_k) of polynomials in GF(q)[x] such that 1 <= deg(f_i) <= n for all i and gcd(f_1, ..., f_k) = 1.

Examples

			a(1) = 2 since gcd(x,x+1) = 1 and gcd(x+1,x) = 1 and no other pair (f,g) of polynomials in GF(2)[x] of degree 1 satisfy gcd(f,g) = 1.
		

Crossrefs

Formula

a(n) = 2*(2^n-1)^2.
G.f.: 2*x*(1+2*x)/((1-x)*(1-2*x)*(1-4*x)). - Colin Barker, Feb 22 2012

A087292 Number of pairs of polynomials (f,g) in GF(3)[x] satisfying 1 <= deg(f) < =n, 1 <= deg(g) <= n and gcd(f,g) = 1.

Original entry on oeis.org

0, 24, 384, 4056, 38400, 351384, 3179904, 28671576, 258201600, 2324286744, 20919997824, 188284231896, 1694570841600, 15251175838104, 137260697334144, 1235346620381016, 11118120616550400, 100063088648317464, 900567807132948864, 8105110292090814936
Offset: 0

Views

Author

W. Edwin Clark, Aug 29 2003

Keywords

Comments

Unpublished result due to Stephen Suen, David desJardins, and W. Edwin Clark. This is the case k = 2, q = 3 of their formula (q^(n+1)-q)^k*(1-1/(q^(k-1))) for the number of ordered k-tuples (f_1, ..., f_k) of polynomials in GF(q)[x] such that 1 <= deg(f_i) <= n for all i and gcd(f_1, ..., f_k) = 1.

Examples

			There are 6 polynomials in GF(3)[x] of degree 1. a(1) = 24 since the 6*4 = 24 ordered pairs (f,g) where g is not equal to f or 2f are the only ordered pairs of polynomials of degree 1 satisfying gcd(f,g) = 1.
		

Crossrefs

Formula

a(n) = 6*(3^n-1)^2.
G.f.: -24*x*(3*x+1)/((x-1)*(3*x-1)*(9*x-1)). [Colin Barker, Sep 05 2012]

A199493 a(n) = 2*8^n+1.

Original entry on oeis.org

3, 17, 129, 1025, 8193, 65537, 524289, 4194305, 33554433, 268435457, 2147483649, 17179869185, 137438953473, 1099511627777, 8796093022209, 70368744177665, 562949953421313, 4503599627370497, 36028797018963969
Offset: 0

Views

Author

Vincenzo Librandi, Nov 07 2011

Keywords

Comments

An Engel expansion of 4 to the base 8 as defined in A181565, with the associated series expansion 4 = 8/3 + 8^2/(3*17) + 8^3/(3*17*129) + 8^4/(3*17*129*1025) + .... Cf. A087289 and A199552. - Peter Bala, Oct 30 2013

Crossrefs

Programs

  • Magma
    [2*8^n+1: n in [0..30]];
  • Mathematica
    2*8^Range[0, 20] + 1 (* Wesley Ivan Hurt, Jul 23 2025 *)

Formula

a(n) = 8*a(n-1)-7.
a(n) = 9*a(n-1)-8*a(n-2).
G.f.: (3-10*x)/((1-x)*(1-8*x)).

A199552 4*8^n+1.

Original entry on oeis.org

5, 33, 257, 2049, 16385, 131073, 1048577, 8388609, 67108865, 536870913, 4294967297, 34359738369, 274877906945, 2199023255553, 17592186044417, 140737488355329, 1125899906842625, 9007199254740993, 72057594037927937
Offset: 0

Views

Author

Vincenzo Librandi, Nov 08 2011

Keywords

Comments

An Engel expansion of 2 to the base 8 as defined in A181565, with the associated series expansion 2 = 8/5 + 8^2/(5*33) + 8^3/(5*33*257) + 8^4/(5*33*257*2049) + .... Cf. A087289 and A199493. - Peter Bala, Oct 29 2013

Crossrefs

Programs

  • Magma
    [4*8^n+1: n in [0..30]];
  • Mathematica
    4*8^Range[0,20]+1 (* or *) LinearRecurrence[{9,-8},{5,33},20] (* Harvey P. Dale, Mar 18 2018 *)

Formula

a(n) = 8*a(n-1)-7.
a(n) = 9*a(n-1)-8*a(n-2).
G.f.: (5-12*x)/((1-x)*(1-8*x)).

A228767 Second bisection of the inverse binomial transform of the rational sequence with e.g.f. (x/2)*(exp(-x)+1)/(exp(x)-1).

Original entry on oeis.org

-2, -9, -45, -231, -1161, -5643, -26637, -122895, -557073, -2490387, -11010069, -48234519, -209715225, -905969691, -3892314141, -16642998303, -70866960417, -300647710755, -1271310319653, -5360119185447, -22539988369449, -94557999988779, -395824185999405
Offset: 1

Views

Author

Michel Marcus, following a suggestion of Paul Curtz, Sep 03 2013

Keywords

Comments

The sequence to be transformed is A176328/A176591, its inverse binomial transform begins: 1, -2, 25/6, -9, 599/30, -45, 4285/42, -231, 15599/30, -1161, 169625/66, -5643, 33578309/2730, ...
Its first bisection is constituted of fractional numbers, with denominators A176591, whereas this bisection is constituted of integers only.
It appears that a(1) = -2 and a(n) = -1 * A005408(n-1) * A087289(n-2) for n>1.

Programs

  • PARI
    fr(n) = if (n==0, 1, (-1)^n*(subst(bernpol(n), x, 1) + subst(bernpol(n), x, 2))/2);
    ibtfr(n) = sum(k = 0, n, (-1)^(n-k)*binomial(n, k) * fr(k));
    lista(nn) = {forstep(n=1, nn, 2, print1(ibtfr(n), ", "););} \\ Michel Marcus, Sep 03 2013

Formula

Conjecture: G.f. -x*(2-11*x+21*x^2-2*x^3+8*x^4)/((1-x)^2*(1-4*x)^2). [Bruno Berselli, Sep 03 2013]
Conjecture: a(n) = (8+4^n)*(1-2*n)/8 for n>1, a(1)=-2. [Bruno Berselli, Sep 03 2013]

A283070 Sierpinski tetrahedron or tetrix numbers: a(n) = 2*4^n + 2.

Original entry on oeis.org

4, 10, 34, 130, 514, 2050, 8194, 32770, 131074, 524290, 2097154, 8388610, 33554434, 134217730, 536870914, 2147483650, 8589934594, 34359738370, 137438953474, 549755813890, 2199023255554, 8796093022210, 35184372088834, 140737488355330, 562949953421314
Offset: 0

Views

Author

Peter M. Chema, Feb 28 2017

Keywords

Comments

Number of vertices required to make a Sierpinski tetrahedron or tetrix of side length 2^n. The sum of the vertices (balls) plus line segments (rods) of one tetrix equals the vertices of its larger, adjacent iteration. See formula.
Equivalently, the number of vertices in the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 17 2017
Also the independence number of the (n+2)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Aug 29 2021
Final digit alternates 4 and 0.

Crossrefs

Subsequence of A016957.
First bisection of A052548, A087288; second bisection of A049332, A133140, A135440.
Cf. A002023 (edge count).

Programs

Formula

G.f.: 2*(2 - 5*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
a(n+1) = a(n) + A002023(n).
a(n) = 2*A052539(n) = A188161(n) - 1 = A087289(n) + 1 = A056469(2*n+2) = A261723(4*n+1).
E.g.f.: 2*(exp(4*x) + exp(x)). - G. C. Greubel, Aug 17 2017

Extensions

Entry revised by Editors of OEIS, Mar 01 2017

A294950 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1-j^(k*j)*x^j)^j in powers of x.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 9, 6, 1, 1, 33, 90, 13, 1, 1, 129, 2220, 1162, 24, 1, 1, 513, 59178, 265132, 17435, 48, 1, 1, 2049, 1594836, 67180330, 49163241, 310193, 86, 1, 1, 8193, 43048770, 17181660628, 152662629227, 13121450895, 6286826, 160
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2017

Keywords

Examples

			Square array begins:
    1,     1,        1,            1,               1, ...
    1,     1,        1,            1,               1, ...
    3,     9,       33,          129,             513, ...
    6,    90,     2220,        59178,         1594836, ...
   13,  1162,   265132,     67180330,     17181660628, ...
   24, 17435, 49163241, 152662629227, 476855156157129, ...
		

Crossrefs

Columns k=0..2 give A000219, A294813, A294954.
Rows n=0+1, 2 give A000012, A087289.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(2+k*j)) * A(n-j,k) for n > 0.

A308704 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*d+1).

Original entry on oeis.org

1, 1, 3, 1, 9, 4, 1, 33, 82, 7, 1, 129, 2188, 1033, 6, 1, 513, 59050, 262177, 15626, 12, 1, 2049, 1594324, 67108993, 48828126, 280026, 8, 1, 8193, 43046722, 17179869697, 152587890626, 13060696236, 5764802, 15, 1, 32769, 1162261468, 4398046513153, 476837158203126, 609359740069674, 4747561509944, 134218761, 13
Offset: 1

Views

Author

Seiichi Manyama, Jun 18 2019

Keywords

Examples

			Square array begins:
   1,     1,        1,            1,               1, ...
   3,     9,       33,          129,             513, ...
   4,    82,     2188,        59050,         1594324, ...
   7,  1033,   262177,     67108993,     17179869697, ...
   6, 15626, 48828126, 152587890626, 476837158203126, ...
		

Crossrefs

Columns k=0..3 give A000203, A283498, A283533, A283535.
Row n=1..2 give A000012, A087289.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*# + 1) &]; Table[T[k, n - k], {n, 1, 9}, {k, 1, n}] // Flatten (* Amiram Eldar, May 09 2021 *)

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - x^j)^(j^(k*j))).
G.f. of column k: Sum_{j>=1} j^(k*j+1) * x^j/(1 - x^j).

A341019 a(n) is the Y-coordinate of the n-th point of the space filling curve M defined in Comments section; A341018 gives X-coordinates.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7, 6, 7, 6, 5, 4, 5, 6, 7, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 1, 0, 1, 0, 1, 2, 3, 4, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8, 7, 6, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 11, 10, 9, 8, 9, 8, 9, 10, 11, 12, 11, 12, 13, 12
Offset: 0

Views

Author

Rémy Sigrist, Feb 02 2021

Keywords

Comments

We define the family {M_n, n >= 0}, as follows:
- M_0 corresponds to the points (0, 0), (1, 1) and (2, 0), in that order:
+
/ \
/ \
+ +
O
- for any n >= 0, M_{n+1} is obtained by arranging 4 copies of M_n as follows:
+ . . . + . . . +
. B . B .
+ . . . + . . .
. B . .A C.A C.
. . --> + . . . + . . . +
.A C. .C . A.
+ . . . + . B.B .
O .A . C.
+ . . . + . . . +
O
- for any n >= 0, M_n has A087289(n) points,
- the space filling curve M is the limit of M_{2*n} as n tends to infinity.
The odd bisection of M is similar to a Hilbert's Hamiltonian walk (hence the connection with A059252).

Examples

			The curve M starts as follows:
       11+ 13+   +19 +21
        / \ / \ / \ / \
     10+ 12+ 14+18 +20 +22
        \     / \     /
        9+ 15+   +17 +23
        /     \ /     \
      8+  6+   +   +26 +24
        \ / \ 16  / \ /
        7+  5+   +27 +25
            /     \
          4+       +28
            \     /
        1+  3+   +29 +31
        / \ /     \ / \
      0+  2+       +30 +32
- so a(0) = a(2) = a(30) = a(32) = 0,
     a(1) = a(3) = a(29) = a(31) = 1.
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A059252(n) = (a(2*n+1)-1)/2.
a(4*n) = 2*A341018(n).
a(16*n) = 4*a(n).
Previous Showing 11-20 of 23 results. Next