cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A118370 Divisorial primes: Primes p such that p = 1 + Product_{d|n} d for some n (ordered by n).

Original entry on oeis.org

2, 3, 37, 101, 197, 331777, 677, 8503057, 9834497, 5477, 59969537, 8837, 17957, 21317, 562448657, 916636177, 42437, 3208542737, 3782742017, 5006411537, 7676563457, 98597, 106277, 11574317057, 19565295377, 416806419029812551937, 148997, 34188010001, 38167092497
Offset: 1

Views

Author

Rick L. Shepherd, Apr 25 2006

Keywords

Comments

See A118369 for the corresponding n. These are primes in the sequence 1 + A007955. (The suggested name "divisorial prime" is obviously analogous to that of factorial primes (A088332) and primorial primes (A014545).).

Examples

			The prime 37 is a(3) as there exists a number, A118369(3)=6, such that 37 = 6*3*2*1 + 1, where {1,2,3,6} are all the positive divisors of 6.
		

Crossrefs

Cf. A258455 (sorted).

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, p = Times @@ Divisors[n]; If[PrimeQ[p+1], Sow[p+1]]]][[2, 1]] (* Jean-François Alcover, Oct 07 2016 *)
  • PARI
    for(n=1,2500, s=1; fordiv(n,d,s=s*d); if(isprime(s+1), print1(s+1,", ")))

A300947 Primes of form (2*k)! + k! + 1.

Original entry on oeis.org

3, 727, 20922789928321, 403291461126605641811020801, 523022617466601111760007224221719391608832001
Offset: 1

Views

Author

Seiichi Manyama, Mar 22 2018

Keywords

Comments

The next term is too large to include.

Crossrefs

Programs

  • Maple
    select(isprime,[seq(factorial(2*k)+factorial(k)+1,k=0..600)]); # Muniru A Asiru, May 27 2018
  • PARI
    lista(nn) = {for(k=0, nn, if(ispseudoprime(p=(2*k)!+k!+1), print1(p, ", ")));} \\ Altug Alkan, Mar 22 2018

Formula

a(n) = (2*A242487(n))! + A242487(n)! + 1.

A062701 Index of factorial primes of the form k! + 1.

Original entry on oeis.org

1, 2, 4, 2428957
Offset: 1

Views

Author

Labos Elemer, Jul 11 2001

Keywords

Examples

			The exact subscript of the 5th prime [1 + 27! = 10888869450418352160768000001] is not yet available.
		

Crossrefs

Formula

a(n) = PrimePi(A002981(n)!+1).

Extensions

Offset 1 from Michel Marcus, Aug 29 2019

A093437 a(n) = largest prime of the form n!/k! + 1.

Original entry on oeis.org

2, 2, 3, 7, 13, 61, 31, 2521, 20161, 15121, 604801, 39916801, 3991681, 3113510401, 14529715201, 54486432001, 10461394944001, 59281238016001, 53353114214401, 2, 670442572801, 8515157028618240001, 9366672731480064001
Offset: 0

Views

Author

Amarnath Murthy, Apr 01 2004

Keywords

Comments

Is 19 the largest n such that a(n) = 2? There are none for 19 < n <= 600. - Robert Israel, Jan 16 2017

Examples

			a(7) = 2521 because 7!/2! + 1 = 2521 is prime, whereas 7!/1! + 1 = 5041 = 71^2 is composite;
a(19) = 2 because the only prime of the form 19!/k! + 1 is 19!/19! + 1 = 2.
		

Crossrefs

Cf. A093621 (smallest k > 0 such that n!/k! + 1 is prime), A002981 (n! + 1 is prime), A088332 (primes of form n! + 1).

Programs

  • Maple
    f:= proc(n) local k,x;
      x:= n!;
      for k from 2 do
        if isprime(x+1) then return x+1 fi;
        x:= x/k;
      od
    end proc:
    map(f, [$0..40]); # Robert Israel, Jan 16 2017
  • Mathematica
    a[n_] := Module[{k, x}, x = n!; For[k = 2, True, k++, If[PrimeQ[x+1], Return[x+1]]; x = x/k]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2023, after Robert Israel *)

Extensions

Corrected and extended by Hugo Pfoertner, Apr 06 2004

A103319 Primes of the form p! + 1 where p is prime.

Original entry on oeis.org

3, 7, 39916801, 13763753091226345046315979581580902400000001, 33452526613163807108170062053440751665152000000001, 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000001
Offset: 1

Views

Author

Jonathan Sondow, Jan 31 2005

Keywords

Comments

The values of p are 2, 3, 11, 37, 41, 73 which is A093804 (with a different definition). Subsequence of A088332 (primes of the form n! + 1).

Examples

			2 and 2! + 1 = 3 are prime, so 3 is a member.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.

Crossrefs

Programs

  • Mathematica
    Select[Table[p!+1,{p,Prime[Range[30]]}],PrimeQ] (* Harvey P. Dale, Nov 28 2019 *)

A084727 Primes arising in A084726.

Original entry on oeis.org

2, 3, 7, 281, 76561, 576577, 17873857, 643458817, 337767408001, 21617114112001, 39916801, 119715577952256001, 1980990543353657472001, 26582634158080001, 3577861898239093446857008573440001, 711975497511453268455460274177
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 13 2003

Keywords

Comments

Smallest prime of the form: 1 + product of n terms of an arithmetic progression with first term 1.
Conjecture: All terms exist.
If n! + 1 is prime (A002981) then a(n) = A088332(n). - Hugo Pfoertner, Nov 18 2004

Examples

			a(1) = 2 = 1 + 1;
a(4) = 281 = 1*4*7*10 + 1 (1*2*3*4 + 1 = 25 is composite);
a(5) = 76561 = 1*8*15*22*29 + 1.
		

Crossrefs

Programs

  • Maple
    A084727 := proc(n) local k,p: for k from 1 do p:=1+mul(1+j*k,j=0..n-1): if(isprime(p))then return p: fi: od: end: seq(A084727(n),n=1..16); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    np[n_]:=Module[{k=1},While[!PrimeQ[Times@@NestList[k+#&,1,n-1]+1],k++];Times@@NestList[k+#&,1,n-1]+1]; Array[np,20] (* Harvey P. Dale, Aug 05 2021 *)

Formula

a(n) = 1 + Product_{i = 0..n-1} (1 + i*A084726(n)). - David Wasserman, Jan 03 2005

Extensions

More terms from David Wasserman, Jan 03 2005

A181764 Numbers n such that n!+1 is a product of two distinct prime numbers.

Original entry on oeis.org

6, 8, 10, 13, 14, 19, 20, 24, 25, 26, 28, 34, 38, 48, 54, 55, 59, 71, 75, 92, 109, 114, 115
Offset: 1

Views

Author

Keywords

Comments

n! + 1 must be the product of two distinct prime numbers and also the product of only two prime numbers counted with multiplicity. Thus, 12 is NOT a term of the sequence because 12! + 1 = 13*13*2834329. - Harvey P. Dale, Jul 22 2019
Other terms in this sequence: 392, 551, 601, 770, 772, 878, 1033, 1320, 1831, 2620, 2808, 3752, 4233, 4616, 4984, 7260. - Chai Wah Wu, Feb 28 2020

Examples

			6!+1=7*103; 8!+1=61*661; 10!+1=11*329891; 13!+1=83*75024347; 14!+1=23*3790360487; 19!+1=71*1713311273363831;..
		

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Last/@FactorInteger[n]=={1,1}; Select[Range[40], fQ[#!+1]&]

Extensions

Extended by D. S. McNeil, Nov 13 2010
One more term (114) (factored by Womack et al.) from Sean A. Irvine, May 25 2015
One more term (115) (factored by Womack et al.) from Sean A. Irvine, Feb 08 2016

A301523 Integers which can be partitioned into two distinct factorials. 0! and 1! are not considered distinct.

Original entry on oeis.org

3, 7, 8, 25, 26, 30, 121, 122, 126, 144, 721, 722, 726, 744, 840, 5041, 5042, 5046, 5064, 5160, 5760, 40321, 40322, 40326, 40344, 40440, 41040, 45360, 362881, 362882, 362886, 362904, 363000, 363600, 367920, 403200, 3628801, 3628802, 3628806, 3628824, 3628920, 3629520, 3633840, 3669120, 3991680
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

Numbers of the form i! + j! where i > j > 0. - Altug Alkan, Mar 23 2018
Primes in this sequence are A088332(n) for n > 1.

Examples

			    + |   1    2    6   24
  ----+--------------------
    1 |
    2 |   3;
    6 |   7,   8;
   24 |  25,  26,  30;
  120 | 121, 122, 126, 144;
		

Crossrefs

Programs

  • Mathematica
    Union[Total/@Subsets[Range[10]!,{2}]] (* Harvey P. Dale, Aug 25 2020 *)

A123909 Primes of the form k!+11.

Original entry on oeis.org

13, 17, 131, 5051, 3628811
Offset: 1

Views

Author

Alexander Adamchuk, Oct 28 2006

Keywords

Comments

Corresponding numbers k such that k!+11 is prime are {2, 3, 5, 7, 10}.

Crossrefs

Cf. A088332 - Primes of the form n!+1.

Programs

  • Mathematica
    Select[Table[n!+11,{n,1,1000}],PrimeQ[ # ]&]
Previous Showing 11-19 of 19 results.