cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A091181 A091180 indexed by A000040.

Original entry on oeis.org

4, 6, 8, 11, 12, 19, 29, 31, 34, 37, 42, 46, 47, 63, 68, 75, 80, 93, 95, 100, 105, 106, 115, 133, 136, 138, 141, 145, 151, 157, 159, 167, 169, 175, 187, 197, 210, 211, 217, 221, 222, 232, 233, 247, 257, 263, 274, 275, 279, 306, 308, 327, 335, 337, 339, 355, 365
Offset: 1

Views

Author

Ray Chandler, Dec 27 2003

Keywords

Crossrefs

Formula

a(n) = k such that A000040(k) = A091180(n).
a(n) = A000720(A091180(n)). - Michel Marcus, Aug 06 2021

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 06 2021

A175566 a(n) = the least prime p such that (2*k + 1)*p - 2*k, k=1..n are all prime.

Original entry on oeis.org

3, 3, 7, 1171, 64591, 25153801, 25153801, 4747505071
Offset: 1

Views

Author

Zak Seidov, Jul 11 2010

Keywords

Comments

First primes p such that (2k+1)p-2k k=1..7 are
25153801,507079861,610817971,942962791,1040241511,1223511871,1797884761.
First primes p such that (2k+1)p-2k k=1..8 are
4747505071,10817047081,21071155561,41279978041,44304317821,
49710893611,58845917971,79925475841,96466884361,106120099471,107001847261.

Crossrefs

Cf. A088878 Prime numbers p such that 3p-2 is a prime.

A177336 Greater of twin primes p such that 3*p-2 is also greater of twin primes.

Original entry on oeis.org

5, 7, 61, 271, 1951, 3001, 6361, 11491, 11551, 14551, 18541, 19891, 21841, 31081, 32911, 32971, 33331, 33601, 42571, 42841, 50461, 53551, 58111, 68881, 70201, 74611, 79231, 80911, 93811, 96331, 98911, 104311, 109141, 114601, 121021, 125791
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 07 2010

Keywords

Examples

			a(1) = 5 because 5 is the greater of the twin primes (3, 5) and 3*5 - 2 = 13 is the greater of the twin primes (11, 13).
		

Crossrefs

Programs

  • Magma
    [p:p in PrimesInInterval(3,130000)| IsPrime(p-2) and IsPrime(3*p-2) and IsPrime(3*p-4)]; // Marius A. Burtea, Dec 23 2019
  • Mathematica
    Select[Range[3, 126000], And @@ PrimeQ[{#, # - 2, 3# - 2, 3# - 4}] &] (* Amiram Eldar, Dec 23 2019 *)

Formula

From Wesley Ivan Hurt, May 03 2022: (Start)
a(n) = A132929(n) + 1.
a(n) = A174920(n) + 2. (End)

Extensions

Definition corrected, 1231 and 1483 inserted, and all values above 3000 corrected by R. J. Mathar, May 10 2010
Terms corrected to match definition by D. S. McNeil, May 10 2010
Name corrected by Amiram Eldar, Dec 23 2019

A265763 Numerators of primes-only best approximates (POBAs) to 3; see Comments.

Original entry on oeis.org

7, 5, 17, 13, 23, 19, 31, 41, 37, 53, 59, 71, 67, 89, 113, 109, 131, 127, 139, 157, 179, 181, 199, 211, 239, 251, 269, 293, 311, 307, 337, 383, 379, 409, 419, 449, 491, 487, 503, 499, 521, 541, 571, 577, 593, 599, 631, 683, 701, 719, 751, 773, 769, 787, 809
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3 start with 7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *)
    Numerator[tL]   (* A091180 *)
    Denominator[tL] (* A088878 *)
    Numerator[tU]   (* A094525 *)
    Denominator[tU] (* A023208 *)
    Numerator[y]    (* A265763 *)
    Denominator[y]  (* A265764 *)

A265764 Denominators of primes-only best approximates (POBAs) to 3; see Comments.

Original entry on oeis.org

2, 2, 5, 5, 7, 7, 11, 13, 13, 17, 19, 23, 23, 29, 37, 37, 43, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 103, 103, 113, 127, 127, 137, 139, 149, 163, 163, 167, 167, 173, 181, 191, 193, 197, 199, 211, 227, 233, 239, 251, 257, 257, 263, 269, 271, 277, 293
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 3 start with  7/2, 5/2, 17/5, 13/5, 23/7, 19/7, 31/11, 41/13, 37/13, 53/17. For example, if p and q are primes and q > 13, then 41/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 3; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265763/A265764 *)
    Numerator[tL]   (* A091180 *)
    Denominator[tL] (* A088878 *)
    Numerator[tU]   (* A094525 *)
    Denominator[tU] (* A023208 *)
    Numerator[y]    (* A265763 *)
    Denominator[y]  (* A265764 *)

A114828 Numbers k such that the k-th octagonal number has 9 prime factors counted with multiplicity.

Original entry on oeis.org

64, 96, 128, 144, 162, 182, 198, 216, 224, 234, 246, 270, 278, 288, 304, 310, 320, 324, 352, 390, 414, 416, 432, 438, 480, 504, 528, 544, 550, 558, 584, 594, 600, 646, 648, 654, 662, 684, 694, 702, 710, 729, 750, 752, 756, 798, 810, 834, 850, 870, 888, 900
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

k has at most 8 prime factors counted with multiplicity.

Examples

			a(1) = 64 because OctagonalNumber(64) = Oct(64) = 64*(3*64-2) = 12160 = 2^7 * 5 * 19 has exactly 9 prime factors (seven are all equally 2; factors need not be distinct).
a(2) = 96 because Oct(96) = 96*(3*96-2) = 27456 = 2^6 * 3 * 11 * 13 is 9-almost prime [also 27456 = Oct(96) = Oct(Oct(6)) is an iterated octagonal number].
a(3) = 128 because Oct(128) = 128*(3*128-2) = 48896 = 2^8 * 191.
		

Crossrefs

Programs

  • Magma
    A000567:=func< n | n*(3*n-2) >; Is9almostprime:=func< n | &+[k[2]: k in Factorization(n)] eq 9 >; [ n: n in [2..1000] | Is9almostprime(A000567(n)) ]; // Klaus Brockhaus, Dec 22 2010
    
  • Mathematica
    Select[Range[900],PrimeOmega[PolygonalNumber[8,#]]==9&] (* James C. McMahon, Jul 30 2024 *)
  • PARI
    isok(k) = bigomega(k*(3*k-2)) == 9; \\ Michel Marcus, Aug 02 2024

Formula

Integers k such that k*(3*k-2) has exactly nine prime factors (with multiplicity).
Integers k such that A000567(k) is a term of A046312.
Integers k such that A001222(A000567(k)) = 9.
Integers k such that A001222(k) + A001222(3*k-2) = 9.
Integers k such that (3*k-2)*(3*k-1)*(3*k)/((3*k-2)+(3*k-1)+(3*k)) is in A046310.

Extensions

Missing terms inserted by R. J. Mathar, Dec 22 2010
a(40)-a(52) from James C. McMahon, Jul 30 2024
Name edited by David A. Corneth, Jul 31 2024

A163628 Integers such that the two adjacent integers are a prime and three times a prime.

Original entry on oeis.org

8, 10, 14, 16, 20, 22, 32, 38, 40, 52, 58, 68, 70, 88, 110, 112, 128, 130, 140, 158, 178, 182, 200, 212, 238, 250, 268, 292, 308, 310, 338, 380, 382, 410, 418, 448, 488, 490, 500, 502, 520, 542, 572, 578, 592, 598, 632, 682, 700, 718, 752, 770, 772, 788, 808
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 02 2009

Keywords

Comments

Union[3*A023208 + 1, 3*A088878 - 1]. [Zak Seidov, Aug 07 2009]

Examples

			a(1)=8 which lies between 7=A000040(4) and 9 = A001748(2).
a(2)=10 which lies between 9=A001748(2) and 11 = A000040(5).
		

Crossrefs

Programs

Extensions

Many terms like 44, 46, 62 etc. removed by R. J. Mathar, Aug 06 2009

A173269 2*prime(prime(n))-3 and 3*prime(prime(n))-2 are both primes.

Original entry on oeis.org

1, 2, 3, 8, 11, 14, 15, 19, 23, 24, 28, 39, 44, 47, 54, 62, 63, 81, 85, 101, 121, 122, 124, 136, 152, 159, 180, 218, 219, 241, 247, 253, 274, 290, 298, 307, 323, 324, 341, 361, 371, 376, 381, 403, 410, 413, 441, 443, 479, 487, 499, 552, 554, 556, 562, 582, 622
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 14 2010

Keywords

Examples

			a(1)=1 because 2*p(p(1))-3=2*p(2)-3=2*3-3=3=prime and 3*p(p(1))-2=7=prime; a(2)=2 because 2*p(p(2))-3=2*p(3)-3=2*5-3=7=prime and 3*p(p(2))-2=13=prime; a(3)=3 because 2*p(p(3))-3=2*p(5)-3=2*11-3=19=prime and 3*p(p(3))-2=31=prime; a(4)=8 because 2*p(p(8))-3=2*p(19)-3=2*67-3=131=prime and 3*p(p(8))-2=199=prime.
		

Crossrefs

Extensions

Inserted 23 and 24, removed 34, extended the sequence - R. J. Mathar, Mar 01 2010

A173286 2*prime(prime(prime(n)))-3 and 3*prime(prime(prime(n)))-2 are both primes.

Original entry on oeis.org

1, 2, 5, 8, 9, 15, 26, 53, 63, 86, 92, 93, 95, 116, 137, 152, 233, 254, 281, 303, 329, 334, 352, 386, 392, 415, 423, 460, 470, 476, 508, 565, 570, 601, 660, 673, 680, 725, 748, 898, 907, 942, 948, 952, 958, 1045, 1119, 1126, 1138, 1140, 1259, 1314, 1360
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 15 2010

Keywords

Examples

			a(1) = 1 because 2*p(p(p(1)))-3 = 7 = prime and 3*p(p(p(1)))-2 = 13 = prime;
a(2) = 2 because 2*p(p(p(2)))-3 = 19 = prime and 3*p(p(p(2)))-2 = 31 = prime;
a(3) = 5 because 2*p(p(p(5)))-3 = 379 = prime and 3*p(p(p(5)))-2 = 251 = prime;
a(4) = 8 because 2*p(p(p(8)))-3 = 991 = prime and 3*p(p(p(8)))-2 = 659 = prime;
a(5) = 9 because 2*p(p(p(9)))-3 = 1291 = prime and 3*p(p(p(9)))-2 = 859 = prime;
a(6) = 15 because 2*p(p(p(15)))-3 = 3889 = prime and 3*p(p(p(15)))-2 = 2591 = prime.
		

Crossrefs

Programs

  • Mathematica
    pppQ[n_]:=Module[{p=Prime[Prime[Prime[n]]]},AllTrue[{2p-3,3p-2},PrimeQ]]; Select[Range[1400],pppQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 25 2016 *)
  • PARI
    isok(n) = isprime(2*prime(prime(prime(n)))-3) && isprime(3*prime(prime(prime(n)))-2); \\ Michel Marcus, Sep 02 2013

Extensions

Extended beyond 15 by R. J. Mathar, Mar 01 2010

A120637 Primes such that their triple is 2 away from a prime number.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 103, 113, 127, 137, 139, 149, 163, 167, 173, 181, 191, 193, 197, 199, 211, 227, 233, 239, 251, 257, 263, 269, 271, 277, 293, 307, 313, 317, 331, 337, 347, 349, 353, 367, 373, 383
Offset: 1

Views

Author

Cino Hilliard, Aug 17 2006

Keywords

Comments

This sequence is a variation of the sequence in the reference. However, this sequence should have an infinite number of terms.

Examples

			19 is a prime and 19*3 = 57 which is two away from 59 which is prime.
31 is not in the table because 31*3 = 93 which is 2 away from 91 and 95, both not prime.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers A Computational Perspective, Springer Verlag 2002, p. 49, exercise 1.18.

Crossrefs

Cf. A125272.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[3#+2]||PrimeQ[3#-2]&] (* Harvey P. Dale, Aug 10 2011 *)
  • PARI
    primepm2(n,k) { local(x,p1,p2,f1,f2,r); if(k%2,r=2,r=1); for(x=1,n, p1=prime(x); p2=prime(x+1); if(isprime(p1*k+r)||isprime(p1*k-r), print1(p1",") ) ) }

Formula

Union of A023208 and A088878.
Previous Showing 31-40 of 44 results. Next