cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A132696 Decimal expansion of 6/Pi.

Original entry on oeis.org

1, 9, 0, 9, 8, 5, 9, 3, 1, 7, 1, 0, 2, 7, 4, 4, 0, 2, 9, 2, 2, 6, 6, 0, 5, 1, 6, 0, 4, 7, 0, 1, 7, 2, 3, 4, 4, 4, 1, 3, 5, 1, 5, 7, 4, 8, 8, 8, 5, 4, 7, 7, 3, 8, 4, 9, 7, 2, 0, 0, 8, 1, 2, 8, 7, 0, 6, 7, 6, 1, 5, 7, 1, 6, 1, 0, 7, 1, 8, 4, 2, 1, 0, 8, 1, 3, 6, 5, 6, 3, 3, 1, 9, 5, 0, 3, 7, 0, 3, 1, 4, 7, 2, 8, 7
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007, Nov 02 2007

Keywords

Comments

6/Pi = Volume of the cuboid (If L1>L2>L3) / Volume of the inscribed ellipsoid.
6/Pi = Volume of the cuboid (If L1>(L2=L3)) / Volume of the inscribed spheroid.
6/Pi = Volume of the regular hexahedron (or cube) / Volume of the inscribed Sphere.
6/Pi = 1 / Arc of 30 degrees.
6/Pi = Volume of the cuboid (If L1<(L2=L3)) / Volume of the inscribed spheroid.
6/Pi = Surface area of the regular hexahedron (or cube) / surface area of the inscribed sphere.

Examples

			1.90985931710274402922660516047... .
		

Crossrefs

Programs

Formula

Equals Product_{k>=1} (2k+1)^3 / ( (2k)^2*(2k+3) ). - Federico Provvedi, Nov 09 2024

Extensions

More terms from Erich Friedman, Mar 22 2008

A132702 Decimal expansion of 12/Pi.

Original entry on oeis.org

3, 8, 1, 9, 7, 1, 8, 6, 3, 4, 2, 0, 5, 4, 8, 8, 0, 5, 8, 4, 5, 3, 2, 1, 0, 3, 2, 0, 9, 4, 0, 3, 4, 4, 6, 8, 8, 8, 2, 7, 0, 3, 1, 4, 9, 7, 7, 7, 0, 9, 5, 4, 7, 6, 9, 9, 4, 4, 0, 1, 6, 2, 5, 7, 4, 1, 3, 5, 2, 3, 1, 4, 3, 2, 2, 1, 4, 3, 6, 8, 4, 2, 1, 6, 2, 7, 3, 1, 2, 6, 6, 3, 9, 0, 0, 7, 4, 0, 6, 2, 9, 4, 5, 7, 4
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Comments

From Bernard Schott, Apr 17 2022: (Start)
For any triangle ABC, (see Crux Mathematicorum):
(b+c)/A + (c+a)/B + (a+b)/C >= (12/Pi) * s,
b*c/(A*(s-a)) + c*a/(B*(s-b)) + a*b/(C*(s-c)) >= (12/Pi) * s,
where (A,B,C) are the angles (measured in radians), (a,b,c) the side lengths of this triangle and s the semiperimeter.
Equality stands iff triangle ABC is equilateral. (End)

Examples

			3.819718634...
		

Crossrefs

Programs

Formula

Equals 2*A132696 = 4*A089491 = 6*A060294. -R. J. Mathar, Jul 29 2024

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A132699 Decimal expansion of 9/Pi.

Original entry on oeis.org

2, 8, 6, 4, 7, 8, 8, 9, 7, 5, 6, 5, 4, 1, 1, 6, 0, 4, 3, 8, 3, 9, 9, 0, 7, 7, 4, 0, 7, 0, 5, 2, 5, 8, 5, 1, 6, 6, 2, 0, 2, 7, 3, 6, 2, 3, 3, 2, 8, 2, 1, 6, 0, 7, 7, 4, 5, 8, 0, 1, 2, 1, 9, 3, 0, 6, 0, 1, 4, 2, 3, 5, 7, 4, 1, 6, 0, 7, 7, 6, 3, 1, 6, 2, 2, 0, 4, 8, 4, 4, 9, 7, 9, 2, 5, 5, 5, 5, 4, 7, 2, 0, 9, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Comments

9/Pi = 2.864788975654...

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A132701 Decimal expansion of 11/Pi.

Original entry on oeis.org

3, 5, 0, 1, 4, 0, 8, 7, 4, 8, 0, 2, 1, 6, 9, 7, 3, 8, 6, 9, 1, 5, 4, 4, 2, 7, 9, 4, 1, 9, 5, 3, 1, 5, 9, 6, 4, 7, 5, 8, 1, 1, 2, 2, 0, 6, 2, 9, 0, 0, 4, 1, 8, 7, 2, 4, 4, 8, 6, 8, 1, 5, 6, 9, 2, 9, 5, 7, 2, 9, 5, 4, 7, 9, 5, 2, 9, 8, 3, 7, 7, 1, 9, 8, 2, 5, 0, 3, 6, 6, 0, 8, 5, 7, 5, 6, 7, 8, 9, 1, 0, 3, 3, 6, 0
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			3.501408748021697...
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Jun 19 2009

A091379 a(n) = Product_{ p | n } (1 + Legendre(-1,p) ).

Original entry on oeis.org

1, 2, 0, 2, 2, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 2, 0, 0, 2, 0, 4, 0, 0, 2, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 2, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 2, 0, 0, 4, 0
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

References

  • Goro Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see p. 25, Eq. (2) (but without the restriction that a(4k) = 0 and with a different definition of Legendre(-1,2)).

Crossrefs

Programs

  • Maple
    with(numtheory); A091379 := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := mul((1+legendre(-1,t1[i][1])),i=1..nops(t1)); end;
  • Mathematica
    a[n_] := Module[{t1, t2}, t1 = FactorInteger[n]; t2 = Product[(1 + KroneckerSymbol[-1, t1[[i, 1]]]), {i, 1, Length[t1]}]]; a[1] = 1;
    Array[a, 105] (* Jean-François Alcover, Feb 08 2022, from Maple code *)
  • PARI
    vecproduct(v) = { my(m=1); for(i=1,#v,m *= v[i]); m; };
    A091379(n) = vecproduct(apply(p -> (1 + kronecker(-1,p)), factorint(n)[, 1])); \\ Antti Karttunen, Nov 18 2017

Formula

Here we use the definition that Legendre(-1, 2) = 1, Legendre(-1, p) = 1 if p == 1 mod 4, = -1 if p == 3 mod 4.
From Amiram Eldar, Oct 11 2022: (Start)
Multiplicative with a(p^e) = 0 if p == 3 (mod 4) and 2 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/Pi = 0.954929... (A089491). (End)

A016910 a(n) = (6*n)^2.

Original entry on oeis.org

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0

Views

Author

Keywords

Comments

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Programs

Formula

From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)

A112628 Decimal expansion of 2*sqrt(2)/Pi.

Original entry on oeis.org

9, 0, 0, 3, 1, 6, 3, 1, 6, 1, 5, 7, 1, 0, 6, 0, 6, 9, 5, 5, 5, 1, 9, 9, 1, 9, 1, 0, 0, 6, 7, 4, 0, 5, 8, 2, 6, 6, 4, 5, 7, 4, 1, 4, 9, 9, 5, 5, 2, 2, 0, 6, 2, 5, 5, 7, 1, 4, 3, 7, 4, 7, 1, 2, 3, 1, 4, 5, 8, 7, 3, 0, 7, 1, 9, 0, 4, 6, 3, 4, 4, 9, 9, 8, 0, 8, 2, 7, 7, 7, 7, 5, 4, 0, 8, 2, 3, 4, 0, 9, 9, 7, 5, 5, 1
Offset: 0

Views

Author

Rick L. Shepherd, Jan 11 2006

Keywords

Comments

Example of extension to Buffon's Needle Problem: The probability that the boundary of a square will intersect one of the parallel lines if the square's diagonal length l (almost) equals the distance d between each pair of lines. This follows directly from the Weisstein/MathWorld Buffon's Needle Problem link's statement P=p/(Pi*d), where P is the probability of intersection with any convex polygon's boundary if the generalized diameter of that polygon is less than d and p is the perimeter of the polygon. (Take d=l, then p=2*sqrt(2)*d.).
The area of a regular octagon circumscribed in a unit-area circle. - Amiram Eldar, Nov 05 2020

Examples

			0.9003163161571060695551991910067405826645741499552206255714374712314587307...
		

Crossrefs

Cf. A060294 (2/Pi), A089491 (3/Pi), A224268.

Programs

  • Magma
    R:= RealField(100); 2*Sqrt(2)/Pi(R); // G. C. Greubel, Aug 17 2018
  • Mathematica
    RealDigits[2 Sqrt[2]/Pi, 10, 110][[1]] (* Bruno Berselli, Apr 02 2013 *)
    (* From the second comment: *) RealDigits[N[Product[1 - 1/(4 n)^2, {n, 1, Infinity}], 110]][[1]] (* Bruno Berselli, Apr 02 2013 *)
  • PARI
    2*sqrt(2)/Pi
    

Formula

Equals Product_{n>=1} (1-1/(4*n)^2). - Bruno Berselli, Apr 02 2013
Equals sinc(Pi/4). - Peter Luschny, Oct 04 2019
Equals Product_{k>=3} cos(Pi/2^k). - Amiram Eldar, Aug 24 2020

A132698 Decimal expansion of 8/Pi.

Original entry on oeis.org

2, 5, 4, 6, 4, 7, 9, 0, 8, 9, 4, 7, 0, 3, 2, 5, 3, 7, 2, 3, 0, 2, 1, 4, 0, 2, 1, 3, 9, 6, 0, 2, 2, 9, 7, 9, 2, 5, 5, 1, 3, 5, 4, 3, 3, 1, 8, 4, 7, 3, 0, 3, 1, 7, 9, 9, 6, 2, 6, 7, 7, 5, 0, 4, 9, 4, 2, 3, 4, 8, 7, 6, 2, 1, 4, 7, 6, 2, 4, 5, 6, 1, 4, 4, 1, 8, 2, 0, 8, 4, 4, 2, 6, 0, 0, 4, 9, 3, 7, 5, 2, 9, 7, 1, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			2.5464790894703253723021402139602297925513543318473031799626775049423487621476....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009

A132714 Decimal expansion of 24/Pi.

Original entry on oeis.org

7, 6, 3, 9, 4, 3, 7, 2, 6, 8, 4, 1, 0, 9, 7, 6, 1, 1, 6, 9, 0, 6, 4, 2, 0, 6, 4, 1, 8, 8, 0, 6, 8, 9, 3, 7, 7, 6, 5, 4, 0, 6, 2, 9, 9, 5, 5, 4, 1, 9, 0, 9, 5, 3, 9, 8, 8, 8, 0, 3, 2, 5, 1, 4, 8, 2, 7, 0, 4, 6, 2, 8, 6, 4, 4, 2, 8, 7, 3, 6, 8, 4, 3, 2, 5, 4, 6, 2, 5, 3, 2, 7, 8, 0, 1, 4, 8, 1, 2, 5, 8, 9, 1, 4, 9
Offset: 1

Views

Author

Omar E. Pol, Aug 31 2007

Keywords

Examples

			=7.639437268410976116906420641880689377654062995541909539888032514827...
		

Crossrefs

Programs

Formula

24/Pi = Sum_{k>=0} ( (30*k+7)*C(2*k,k)^2*(Hypergeometric2F1[1/2 - k/2, -k/2, 1, 64])/(-256)^k ). - Alexander R. Povolotsky, Dec 20 2012
Another version of this identity is: Sum[(30*k+7) * Binomial[2k,k]^2 * (Sum[Binomial[k-m,m] * Binomial[k,m] * 16^m, {m,0,k/2}])/(256)^k, {k,0,infinity}]. - Alexander R. Povolotsky, Jan 25 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 03 2009

A132697 Decimal expansion of 7/Pi.

Original entry on oeis.org

2, 2, 2, 8, 1, 6, 9, 2, 0, 3, 2, 8, 6, 5, 3, 4, 7, 0, 0, 7, 6, 4, 3, 7, 2, 6, 8, 7, 2, 1, 5, 2, 0, 1, 0, 6, 8, 4, 8, 2, 4, 3, 5, 0, 4, 0, 3, 6, 6, 3, 9, 0, 2, 8, 2, 4, 6, 7, 3, 4, 2, 8, 1, 6, 8, 2, 4, 5, 5, 5, 1, 6, 6, 8, 7, 9, 1, 7, 1, 4, 9, 1, 2, 6, 1, 5, 9, 3, 2, 3, 8, 7, 2, 7, 5, 4, 3, 2, 0, 3, 3, 8, 5, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 26 2007

Keywords

Examples

			2.22816920328653470076437268721520106848243504036639028246734281682455516687917....
		

Crossrefs

Programs

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Dec 02 2009
Showing 1-10 of 27 results. Next