A325244
Number of integer partitions of n with one fewer distinct multiplicities than distinct parts.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 4, 7, 12, 16, 21, 33, 38, 50, 75, 87, 111, 150, 185, 244, 307, 373, 461, 585, 702, 856, 1043, 1255, 1498, 1822, 2143, 2565, 3064, 3607, 4251, 5064, 5920, 6953, 8174, 9503, 11064, 12927, 14921, 17320, 19986, 23067, 26485, 30499, 34894
Offset: 0
The a(3) = 1 through a(10) = 16 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4411)
(32111) (4311) (5221)
(5211) (5311)
(32211) (6211)
(42111) (32221)
(222111) (33211)
(321111) (42211)
(43111)
(52111)
(421111)
(3211111)
-
Table[Length[Select[IntegerPartitions[n],Length[Union[#]]==Length[Union[Length/@Split[#]]]+1&]],{n,0,30}]
A324520
Number of integer partitions of n > 0 where the minimum part equals the number of parts minus the number of distinct parts.
Original entry on oeis.org
0, 1, 0, 1, 2, 2, 3, 3, 7, 6, 11, 12, 15, 21, 25, 31, 43, 49, 58, 79, 89, 108, 135, 165, 190, 232, 279, 328, 387, 461, 536, 650, 743, 870, 1029, 1202, 1381, 1613, 1864, 2163, 2505, 2875, 3292, 3829, 4367, 5001, 5746, 6538, 7462, 8533, 9714, 11008, 12527, 14196
Offset: 1
The a(2) = 1 through a(11) = 11 integer partitions:
(11) (211) (221) (222) (331) (611) (441) (811) (551)
(311) (411) (511) (3221) (711) (3322) (911)
(3211) (4211) (3222) (4222) (3332)
(3321) (5221) (4331)
(4221) (5311) (4421)
(4311) (6211) (5222)
(5211) (5411)
(6221)
(6311)
(7211)
(43211)
A350839
Number of integer partitions of n with a difference < -1 and a conjugate difference < -1.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 3, 7, 11, 17, 26, 39, 54, 81, 108, 148, 201, 269, 353, 467, 601, 779, 995, 1272, 1605, 2029, 2538, 3171, 3941, 4881, 6012, 7405, 9058, 11077, 13478, 16373, 19817, 23953, 28850, 34692, 41599, 49802, 59461, 70905, 84321, 100155, 118694
Offset: 0
The a(5) = 1 through a(10) = 17 partitions:
(311) (411) (511) (422) (522) (622)
(3111) (4111) (611) (711) (811)
(31111) (3311) (4221) (4222)
(4211) (4311) (4411)
(5111) (5211) (5221)
(41111) (6111) (5311)
(311111) (33111) (6211)
(42111) (7111)
(51111) (42211)
(411111) (43111)
(3111111) (52111)
(61111)
(331111)
(421111)
(511111)
(4111111)
(31111111)
Allowing -1 gives
A144300 = non-constant partitions.
These partitions are ranked by
A350841.
A277103 = partitions with the same number of odd parts as their conjugate.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],(Min@@Differences[#]<-1)&&(Min@@Differences[conj[#]]<-1)&]],{n,0,30}]
A328956
Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.
Original entry on oeis.org
6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
33: {2,5}
34: {1,7}
35: {3,4}
38: {1,8}
39: {2,6}
40: {1,1,1,3}
44: {1,1,5}
45: {2,2,3}
(Omega(n) - 1) * omega(n) is
A307409(n).
sigma_0(n) - omega(n) * Omega(n) is
A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is
A328959(n).
Cf.
A000040,
A005117,
A060687,
A070175,
A090858,
A112798,
A303555,
A320632,
A328960,
A328961,
A328962,
A328963,
A328964,
A328965.
-
Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&]
-
is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024
A127002
Number of partitions of n that have the form a+a+b+c where a,b,c are distinct.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 7, 8, 11, 11, 17, 17, 23, 23, 30, 31, 39, 38, 48, 49, 58, 58, 70, 70, 82, 82, 95, 96, 110, 109, 125, 126, 141, 141, 159, 159, 177, 177, 196, 197, 217, 216, 238, 239, 260, 260, 284, 284, 308, 308, 333, 334, 360, 359, 387, 388, 415, 415, 445
Offset: 1
a(10) counts these partitions: {1,1,2,6}, (1,1,3,5), {2,2,1,5}.
a(11) counts {1,1,2,7}, {1,1,3,6}, {1,1,4,5}, {2,2,1,6}, {2,2,3,4}, {3,3,1,4}, {4,4,1,2}
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(7) = 1 through a(13) = 11 partitions of the form a+a+b+c are the following. The Heinz numbers of these partitions are given by A085987.
(3211) (3221) (3321) (5221) (4322) (4332) (4432)
(4211) (4221) (5311) (4331) (4431) (5332)
(4311) (6211) (4421) (5322) (5422)
(5211) (5411) (5331) (5521)
(6221) (6411) (6322)
(6311) (7221) (6331)
(7211) (7311) (6511)
(8211) (7411)
(8221)
(8311)
(9211)
(End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1)
Cf.
A000041,
A008284,
A085987,
A090858,
A116608,
A117571,
A183558,
A325242,
A325244,
A325280,
A325281.
-
R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0] cat Coefficients(R!( x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, May 30 2019
-
g:=sum(sum(sum(x^(i+j+k)*(x^i+x^j+x^k),i=1..j-1),j=2..k-1),k=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..65); # Emeric Deutsch, Jan 05 2007
isA127002 := proc(p) local s; if nops(p) = 4 then s := convert(p,set) ; if nops(s) = 3 then RETURN(1) ; else RETURN(0) ; fi ; else RETURN(0) ; fi ; end:
A127002 := proc(n) local part,res,p; part := combinat[partition](n) ; res := 0 ; for p from 1 to nops(part) do res := res+isA127002(op(p,part)) ; od ; RETURN(res) ; end:
for n from 1 to 200 do print(A127002(n)) ; od ; # R. J. Mathar, Jan 07 2007
-
Table[Length[Select[IntegerPartitions[n],Sort[Length/@Split[#]]=={1,1,2}&]],{n,70}] (* Gus Wiseman, Apr 19 2019 *)
Rest[CoefficientList[Series[x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,70}], x]] (* G. C. Greubel, May 30 2019 *)
-
my(x='x+O('x^70)); concat(vector(6), Vec(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)))) \\ G. C. Greubel, May 30 2019
-
a=(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 30 2019
A350841
Heinz numbers of integer partitions with a difference < -1 and a conjugate difference < -1.
Original entry on oeis.org
20, 28, 40, 44, 52, 56, 63, 68, 76, 80, 84, 88, 92, 99, 100, 104, 112, 116, 117, 124, 126, 132, 136, 140, 148, 152, 153, 156, 160, 164, 168, 171, 172, 176, 184, 188, 189, 196, 198, 200, 204, 207, 208, 212, 220, 224, 228, 232, 234, 236, 244, 248, 252, 260, 261
Offset: 1
The terms together with their prime indices begin:
20: (3,1,1)
28: (4,1,1)
40: (3,1,1,1)
44: (5,1,1)
52: (6,1,1)
56: (4,1,1,1)
63: (4,2,2)
68: (7,1,1)
76: (8,1,1)
80: (3,1,1,1,1)
84: (4,2,1,1)
88: (5,1,1,1)
92: (9,1,1)
99: (5,2,2)
Heinz number rankings are in parentheses below.
These partitions are counted by
A350839.
A116932 = partitions with no successions or gaps of size 1, strict
A025157.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],(Min@@Differences[Reverse[primeMS[#]]]<-1)&&(Min@@Differences[conj[primeMS[#]]]<-1)&]
A133121
Triangle T(n,k) read by rows = number of partitions of n such that number of parts minus number of distinct parts is equal to k, k = 0..n-1.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 3, 1, 0, 1, 5, 4, 2, 2, 1, 0, 1, 6, 6, 3, 3, 2, 1, 0, 1, 8, 7, 5, 4, 2, 2, 1, 0, 1, 10, 8, 10, 3, 5, 2, 2, 1, 0, 1, 12, 13, 8, 9, 4, 4, 2, 2, 1, 0, 1, 15, 15, 14, 10, 8, 5, 4, 2, 2, 1, 0, 1, 18, 21, 15, 16, 8, 9, 4, 4, 2, 2, 1, 0, 1, 22, 25, 23, 17, 17, 7, 10, 4, 4, 2, 2, 1, 0, 1
Offset: 1
1
1,1
2,0,1
2,2,0,1
3,2,1,0,1
4,2,3,1,0,1
5,4,2,2,1,0,1
6,6,3,3,2,1,0,1
8,7,5,4,2,2,1,0,1
10,8,10,3,5,2,2,1,0,1
12,13,8,9,4,4,2,2,1,0,1
15,15,14,10,8,5,4,2,2,1,0,1
18,21,15,16,8,9,4,4,2,2,1,0,1
From _Gus Wiseman_, Jan 23 2019: (Start)
It is possible to augment the triangle to cover the n = 0 and k = n cases, giving:
1
1 0
1 1 0
2 0 1 0
2 2 0 1 0
3 2 1 0 1 0
4 2 3 1 0 1 0
5 4 2 2 1 0 1 0
6 6 3 3 2 1 0 1 0
8 7 5 4 2 2 1 0 1 0
10 8 10 3 5 2 2 1 0 1 0
12 13 8 9 4 4 2 2 1 0 1 0
15 15 14 10 8 5 4 2 2 1 0 1 0
18 21 15 16 8 9 4 4 2 2 1 0 1 0
22 25 23 17 17 7 10 4 4 2 2 1 0 1 0
27 30 32 21 19 16 8 9 4 4 2 2 1 0 1 0
Row seven {5, 4, 2, 2, 1, 0, 1, 0} counts the following integer partitions (empty columns not shown).
(7) (322) (2221) (22111) (211111) (1111111)
(43) (331) (4111) (31111)
(52) (511)
(61) (3211)
(421)
(End)
Row sums are
A000041. Row polynomials evaluated at -1 are
A268498. Row polynomials evaluated at 2 are
A006951.
-
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(x^`if`(j=0, 0, j-1)*b(n-i*j, i-1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2)):
seq(T(n), n=1..16); # Alois P. Heinz, Aug 21 2015
-
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^If[j == 0, 0, j-1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[ Coefficient[p, x, i], {i, 0, n - 1}]][b[n, n]]; Table[T[n], {n, 1, 16}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==k&]],{n,0,15},{k,0,n}] (* augmented version, Gus Wiseman, Jan 23 2019 *)
-
partitm(n,m,nmin)={ local(resul,partj) ; if( n < 0 || m <0, return([;]) ; ) ; resul=matrix(0,m); if(m==0, return(resul); ) ; for(j=max(1,nmin),n\m, partj=partitm(n-j,m-1,j) ; for(r1=1,matsize(partj)[1], resul=concat(resul,concat([j],partj[r1,])) ; ) ; ) ; if(m==1 && n >= nmin, resul=concat(resul,[[n]]) ; ) ; return(resul) ; }
partit(n)={ local(resul,partm,filr) ; if( n < 0, return([;]) ; ) ; resul=matrix(0,n) ; for(m=1,n, partm=partitm(n,m,1) ; filr=vector(n-m) ; for(r1=1,matsize(partm)[1], resul=concat( resul,concat(partm[r1,],filr) ) ; ) ; ) ; return(resul) ; }
A133121row(n)={ local(p=partit(n),resul=vector(n),nprts,ndprts) ; for(r=1,matsize(p)[1], nprts=0 ; ndprts=0 ; for(c=1,n, if( p[r,c]==0, break, nprts++ ; if(c==1, ndprts++, if(p[r,c]!=p[r,c-1], ndprts++ ) ; ) ; ) ; ) ; k=nprts-ndprts; resul[k+1]++ ; ) ; return(resul) ; }
A133121()={ for(n=1,20, arow=A133121row(n) ; for(k=1,n, print1(arow[k],",") ; ) ; ) ; }
A133121() ; \\ R. J. Mathar, Sep 28 2007
-
tabl(nn) = my(pl = prod(n=1, nn, 1+x^n/(1-y*x^n)) + O(x^nn)); for (k=1, nn-1, print(Vecrev(polcoeff(pl,k,x)))); \\ Michel Marcus, Aug 23 2015
A325259
Numbers with one fewer distinct prime exponents than distinct prime factors.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
21: {2,4}
22: {1,5}
26: {1,6}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
46: {1,9}
51: {2,7}
55: {3,5}
57: {2,8}
58: {1,10}
60: {1,1,2,3}
62: {1,11}
Cf.
A056239,
A060687,
A090858,
A112798,
A116608,
A118914,
A130091,
A323023,
A325241,
A325242,
A325244,
A325270,
A325281.
A325270
Numbers with 1 fewer distinct prime exponents than (not necessarily distinct) prime factors.
Original entry on oeis.org
4, 6, 9, 10, 12, 14, 15, 18, 20, 21, 22, 25, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 49, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 115, 116, 117, 118, 119, 121, 122, 123, 124, 129, 133
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
25: {3,3}
26: {1,6}
28: {1,1,4}
33: {2,5}
34: {1,7}
35: {3,4}
38: {1,8}
39: {2,6}
44: {1,1,5}
Cf.
A001221,
A001222,
A000961,
A005117,
A060687,
A062770,
A071625,
A072774,
A090858,
A117571,
A118914,
A130091,
A325244,
A325259.
A328957
Numbers k such that sigma_0(k) != omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 42, 43, 47, 49, 53, 59, 61, 64, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 89, 97, 100, 101, 102, 103, 105, 107, 108, 109, 110, 113, 114, 120, 121, 125, 127, 128, 130, 131, 137
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
(Omega(n) - 1) * omega(n) is
A307409(n).
sigma_0(n) - Omega(n) * omega(n) is
A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is
A328959(n).
Cf.
A060687,
A070175,
A090858,
A112798,
A303555,
A320632,
A328960,
A328961,
A328962,
A328963,
A328964,
A328965.
-
Select[Range[100],DivisorSigma[0,#]!=PrimeOmega[#]*PrimeNu[#]&]
-
is(k) = {my(f = factor(k)); numdiv(f) != omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024
Comments