A158815
Triangle T(n,k) read by rows, matrix product of A046899(row-reversed) * A130595.
Original entry on oeis.org
1, 1, 1, 4, 1, 1, 13, 5, 1, 1, 46, 16, 6, 1, 1, 166, 58, 19, 7, 1, 1, 610, 211, 71, 22, 8, 1, 1, 2269, 781, 261, 85, 25, 9, 1, 1, 8518, 2920, 976, 316, 100, 28, 10, 1, 1, 32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1
Offset: 0
The triangle starts
1;
1, 1;
4, 1, 1;
13, 5, 1, 1;
46, 16, 6, 1, 1;
166, 58, 19, 7, 1, 1;
610, 211, 71, 22, 8, 1, 1;
2269, 781, 261, 85, 25, 9, 1, 1;
8518, 2620, 976, 316, 100, 28, 10, 1, 1;
32206, 11006, 3676, 1196, 376, 116, 31, 11, 1, 1;
122464, 41746, 13938, 4544, 1442, 441, 133, 34, 12, 1, 1;
...
-
A158815 := proc (n, k)
add((-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k), j = 0..n);
end proc:
seq(seq(A158815(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T[n_,k_]:= T[n,k]= Sum[(-1)^(j+k)*Binomial[j,k]*Binomial[2*n-j,n], {j,0,n}];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 22 2021 *)
-
def A158815(n,k): return sum( (-1)^(j+k)*binomial(2*n-j, n)*binomial(j, k) for j in (0..n) )
flatten([[A158815(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Dec 22 2021
A270447
Binomial transform(2) of Catalan numbers.
Original entry on oeis.org
1, 3, 11, 43, 174, 721, 3044, 13059, 56837, 250690, 1119612, 5059561, 23119628, 106753404, 497762380, 2342096579, 11113027686, 53138757319, 255892224332, 1240217043450, 6046131132030, 29631889507380, 145923474439800, 721733515299225, 3583733352377724
Offset: 0
-
Table[Sum[Binomial[2*k,k]/(k+1) * Binomial[2*n-k,n], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Mar 17 2016 *)
a[n_] := ((2 n + 1) Binomial[2 n, n] (1 - Hypergeometric2F1[-1/2, -n - 1, -2 n - 1, 4]))/(2 (n + 1));
Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2022 *)
-
a(n):=sum((binomial(2*k,k)*binomial(2*n-k,n))/(k+1),k,0,n);
-
a(n) = sum(i=0, n, (binomial(2*i, i)*binomial(2*n-i, n))/(i+1)); \\ Altug Alkan, Mar 17 2016
A274404
Number T(n,k) of modified skew Dyck paths of semilength n with exactly k anti-down steps; triangle T(n,k), n>=0, 0<=k<=n-floor((1+sqrt(max(0,8n-7)))/2), read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 14, 6, 42, 28, 3, 132, 120, 28, 1, 429, 495, 180, 20, 1430, 2002, 990, 195, 10, 4862, 8008, 5005, 1430, 165, 4, 16796, 31824, 24024, 9009, 1650, 117, 1, 58786, 125970, 111384, 51688, 13013, 1617, 70, 208012, 497420, 503880, 278460, 89180, 16016, 1386, 35
Offset: 0
/\
\ \
T(3,1) = 1: / \
.
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 5, 1;
: 14, 6;
: 42, 28, 3;
: 132, 120, 28, 1;
: 429, 495, 180, 20;
: 1430, 2002, 990, 195, 10;
: 4862, 8008, 5005, 1430, 165, 4;
: 16796, 31824, 24024, 9009, 1650, 117, 1;
Last elements of rows give
A092392(n-1) for n>0.
-
b:= proc(x, y, t, n) option remember; expand(`if`(y>n, 0,
`if`(n=y, `if`(t=2, 0, 1), b(x+1, y+1, 0, n-1)+
`if`(t<>1 and x>0, b(x-1, y+1, 2, n-1)*z, 0)+
`if`(t<>2 and y>0, b(x+1, y-1, 1, n-1), 0))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(0$3, 2*n)):
seq(T(n), n=0..14);
-
b[x_, y_, t_, n_] := b[x, y, t, n] = Expand[If[y > n, 0,
If[n == y, If[t == 2, 0, 1], b[x + 1, y + 1, 0, n - 1] +
If[t != 1 && x > 0, b[x - 1, y + 1, 2, n - 1] z, 0] +
If[t != 2 && y > 0, b[x + 1, y - 1, 1, n - 1], 0]]]];
T[n_] := CoefficientList[b[0, 0, 0, 2n], z];
T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
A119304
Triangle read by rows: T(n,k) = binomial(4n-k,n-k), 0 <= k <= n.
Original entry on oeis.org
1, 4, 1, 28, 7, 1, 220, 55, 10, 1, 1820, 455, 91, 13, 1, 15504, 3876, 816, 136, 16, 1, 134596, 33649, 7315, 1330, 190, 19, 1, 1184040, 296010, 65780, 12650, 2024, 253, 22, 1, 10518300, 2629575, 593775, 118755, 20475, 2925, 325, 25, 1, 94143280, 23535820
Offset: 0
Triangle begins
1;
4, 1;
28, 7, 1;
220, 55, 10, 1;
1820, 455, 91, 13, 1;
15504, 3876, 816, 136, 16, 1;
134596, 33649, 7315, 1330, 190, 19, 1;
-
Flatten[Table[Binomial[4n-k,n-k],{n,0,9},{k,0,n}]] (* Indranil Ghosh, Feb 26 2017 *)
-
tabl(nn) = {for (n=0,nn,for (k=0,n,print1(binomial(4*n-k,n-k),", ");); print(););} \\ Indranil Ghosh, Feb 26 2017
-
from sympy import binomial
i=0
for n in range(12):
for k in range(n+1):
print(str(i)+" "+str(binomial(4*n-k,n-k)))
i+=1 # Indranil Ghosh, Feb 26 2017
A159965
Riordan array (1/sqrt(1-4x), (1-2x-(1-3x)c(x))/(x*sqrt(1-4x))), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 20, 21, 8, 1, 70, 84, 45, 11, 1, 252, 330, 220, 78, 14, 1, 924, 1287, 1001, 455, 120, 17, 1, 3432, 5005, 4368, 2380, 816, 171, 20, 1, 12870, 19448, 18564, 11628, 4845, 1330, 231, 23, 1, 48620, 75582, 77520, 54264, 26334, 8855, 2024, 300, 26, 1
Offset: 0
Triangle begins
1,
2, 1,
6, 5, 1,
20, 21, 8, 1,
70, 84, 45, 11, 1,
252, 330, 220, 78, 14, 1,
924, 1287, 1001, 455, 120, 17, 1,
3432, 5005, 4368, 2380, 816, 171, 20, 1
A264773
Triangle T(n,k) = binomial(4*n - 3*k, 3*n - 2*k), 0 <= k <= n.
Original entry on oeis.org
1, 4, 1, 28, 5, 1, 220, 36, 6, 1, 1820, 286, 45, 7, 1, 15504, 2380, 364, 55, 8, 1, 134596, 20349, 3060, 455, 66, 9, 1, 1184040, 177100, 26334, 3876, 560, 78, 10, 1, 10518300, 1560780, 230230, 33649, 4845, 680, 91, 11, 1, 94143280, 13884156, 2035800, 296010, 42504, 5985, 816, 105, 12, 1
Offset: 0
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+-----------------------------------------------
0 | 1
1 | 4 1
2 | 28 5 1
3 | 220 36 6 1
4 | 1820 286 45 7 1
5 | 15504 2380 364 55 8 1
6 | 134596 20349 3060 455 66 9 1
7 | 1184040 177100 26334 3876 560 78 10 1
...
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of the triangle, flattened).
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
A005810 (column 0),
A052203 (column 1),
A257633 (column 2),
A224274 (column 3),
A004331 (column 4). Cf.
A002293,
A007318,
A092392 (C(2n-k,n)),
A119301 (C(3n-k,n-k)),
A264772,
A264774.
-
/* As triangle: */ [[Binomial(4*n-3*k, 3*n-2*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264773:= proc(n,k) binomial(4*n - 3*k, 3*n - 2*k); end proc:
seq(seq(A264773(n,k), k = 0..n), n = 0..10);
-
A264773[n_,k_] := Binomial[4*n - 3*k, n - k];
Table[A264773[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Feb 06 2024 *)
A264774
Triangle T(n,k) = binomial(5*n - 4*k, 4*n - 3*k), 0 <= k <= n.
Original entry on oeis.org
1, 5, 1, 45, 6, 1, 455, 55, 7, 1, 4845, 560, 66, 8, 1, 53130, 5985, 680, 78, 9, 1, 593775, 65780, 7315, 816, 91, 10, 1, 6724520, 736281, 80730, 8855, 969, 105, 11, 1, 76904685, 8347680, 906192, 98280, 10626, 1140, 120, 12, 1, 886163135, 95548245, 10295472, 1107568, 118755, 12650, 1330, 136, 13, 1
Offset: 0
Triangle begins
n\k | 0 1 2 3 4 5 6 7
------+---------------------------------------------
0 | 1
1 | 5 1
2 | 45 6 1
3 | 455 55 7 1
4 | 4845 560 66 8 1
5 | 53130 5985 680 78 9 1
6 | 593775 65780 7315 816 91 10 1
7 | 6724520 736281 80730 8855 969 105 11 1
...
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- E. Lebensztayn, On the asymptotic enumeration of accessible automata, Section 2, Discrete Mathematics and Theoretical Computer Science, Vol. 12, No. 3, 2010, 75-80, Section 2.
- R. Sprugnoli, An Introduction to Mathematical Methods in Combinatorics, CreateSpace Independent Publishing Platform 2006, Section 5.6, ISBN-13: 978-1502925244.
-
/* As triangle */ [[Binomial(5*n-4*k, 4*n-3*k): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Dec 02 2015
-
A264774:= proc(n,k) binomial(5*n - 4*k, 4*n - 3*k); end proc:
seq(seq(A264774(n,k), k = 0..n), n = 0..10);
-
Table[Binomial[5 n - 4 k, 4 n - 3 k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
A293468
a(n) = Sum_{k=0..n} k!*binomial(2*n-k, n).
Original entry on oeis.org
1, 3, 11, 44, 189, 880, 4542, 26712, 182793, 1461368, 13477650, 140564536, 1627370146, 20621925504, 283161372284, 4182215376240, 66065933347425, 1111053154779720, 19814069772086730, 373435157945506680, 7415765258637418950, 154751460071567005920, 3385387828167428482020
Offset: 0
-
seq(simplify( GAMMA(n+1/2)*4^n*hypergeom([1,1,-n],[-2*n],1)/(sqrt(Pi)*n!)),n=0..30); # Robert Israel, Oct 09 2017
-
Table[Sum[k! Binomial[2 n - k, n], {k, 0, n}], {n, 0, 22}]
Table[Sum[Gamma[k + 1] Gamma[2 n - k + 1]/(Gamma[n + 1] Gamma[n - k + 1]), {k, 0, n}], {n, 0, 22}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) 1/(1 + ContinuedFractionK[-Floor[(k + 1)/2] x, 1, {k, 1, n}]), {x, 0, n}], {n, 0, 22}]
Table[SeriesCoefficient[(1/(1 - x)^(n + 1)) Sum[k! x^k, {k, 0, n}], {x, 0, n}], {n, 0, 22}]
A293468[n_] := DifferenceRoot[Function[{a,k}, {(k+1)(k-n)a[k] + (k(n-2)-k^2+3n)
a[k+1] + (k-2n) a[k+2] == 0, a[0] == 0, a[1] == Binomial[2n, n]}]][1+n];
Table[A293468[n], {n, 0, 22}] (* Peter Luschny, Oct 09 2017 *)
A371400
Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).
Original entry on oeis.org
1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0
Triangle starts:
[0] 1;
[1] 2, 2;
[2] 6, 9, 6;
[3] 20, 40, 40, 20;
[4] 70, 175, 225, 175, 70;
[5] 252, 756, 1176, 1176, 756, 252;
[6] 924, 3234, 5880, 7056, 5880, 3234, 924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0: [1]
1: [1+1]
2: [1+4+1], [1+4+4]
3: [1+9+9+1], [1+9+21+9]
4: [1+16+36+16+1], [1+16+66+76+16], [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
Column 0 and main diagonal are
A000984.
Column 1 and subdiagonal are
A097070.
The even bisection of the alternating row sums is
A005809.
-
T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
-
T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
Table[T[n, k], {n, 0, 7}, {k, 0, n}]
A176992
Triangle T(n,m) = binomial(2n-k+1, n+1) read by rows, 0 <= k <= n.
Original entry on oeis.org
1, 3, 1, 10, 4, 1, 35, 15, 5, 1, 126, 56, 21, 6, 1, 462, 210, 84, 28, 7, 1, 1716, 792, 330, 120, 36, 8, 1, 6435, 3003, 1287, 495, 165, 45, 9, 1, 24310, 11440, 5005, 2002, 715, 220, 55, 10, 1, 92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1, 352716, 167960, 75582, 31824, 12376, 4368, 1365, 364, 78, 12, 1
Offset: 0
Triangle begins:
1;
3, 1;
10, 4, 1;
35, 15, 5, 1;
126, 56, 21, 6, 1;
462, 210, 84, 28, 7, 1;
1716, 792, 330, 120, 36, 8, 1;
6435, 3003, 1287, 495, 165, 45, 9, 1;
24310, 11440, 5005, 2002, 715, 220, 55, 10, 1;
92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1;
352716, 167960, 75582, 31824, 12376, 4368, 1365, 364, 78, 12, 1;
-
/* As triangle */ [[Binomial(2*n-k+1,n+1): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 12 2015
-
A176992 := proc(n,k) binomial(1+2*n-k,n+1) ; end proc: # R. J. Mathar, Dec 09 2010
-
p[t_, j_] = ((-1)^(j + 1)/2)*Sum[Binomial[k - j - 1, j + 1]*t^k, {k, 0, Infinity}];
Flatten[Table[CoefficientList[ExpandAll[p[t, j]], t], {j, 0, 10}]]
Comments