cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A294274 Sum of the seventh powers of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 129, 2444, 18700, 99012, 376761, 1216688, 3297456, 8158550, 18080425, 37847532, 73399404, 136971464, 241561425, 414517952, 680856256, 1095977898, 1703414961, 2607286700, 3877286700, 5697862412, 8172733129, 11613390384, 16164030000, 22330294142
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), this sequence (k=7), A294275 (k=8), A294276 (k=9), A294279 (k=10).

Programs

  • Magma
    [n^2*(64 - 224*n^2 + 448*n^4 - 381*n^5 + 96*n^6 + 3*n^5*(-1)^n)/768 : n in [1..50]]; // Wesley Ivan Hurt, Jul 12 2025
  • Mathematica
    Table[Sum[i^7 + (n - i)^7, {i, Floor[n/2]}], {n, 40}]
  • PARI
    concat(0, Vec(x^2*(2 + 127*x + 2299*x^2 + 15240*x^3 + 61848*x^4 + 151257*x^5 + 262139*x^6 + 306832*x^7 + 260914*x^8 + 151257*x^9 + 60777*x^10 + 15240*x^11 + 2180*x^12 + 127*x^13+ x^14) / ((1 - x)^9*(1 + x)^8) + O(x^40))) \\ Colin Barker, Nov 20 2017
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i^7 + (n-i)^7.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 127*x + 2299*x^2 + 15240*x^3 + 61848*x^4 + 151257*x^5 + 262139*x^6 + 306832*x^7 + 260914*x^8 + 151257*x^9 + 60777*x^10 + 15240*x^11 + 2180*x^12 + 127*x^13+ x^14) / ((1 - x)^9*(1 + x)^8).
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) - 28*a(n-4) + 28*a(n-5) + 56*a(n-6) - 56*a(n-7) - 70*a(n-8) + 70*a(n-9) + 56*a(n-10) - 56*a(n-11) - 28*a(n-12) + 28*a(n-13) + 8*a(n-14) - 8*a(n-15) - a(n-16) + a(n-17) for n>17.
(End)
a(n) = n^2*(64 - 224*n^2 + 448*n^4 - 381*n^5 + 96*n^6 + 3*n^5*(-1)^n)/768. - Wesley Ivan Hurt, Jul 12 2025

A294275 Sum of the eighth powers of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 257, 7074, 72354, 469540, 2142595, 7972932, 24684612, 68121958, 167731333, 383769830, 812071910, 1633567432, 3103591687, 5683259528, 9961449608, 16980253770, 27957167625, 45040730666, 70540730666, 108577948908, 163239463563, 241980430540, 351625763020
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), this sequence (k=8), A294276 (k=9), A294279 (k=10).

Programs

  • Magma
    [-n*(768-5120*n^2+10752*n^4-15360*n^6+11475*n^7-2560*n^8-45*n^7*(-1)^n)/23040 : n in [1..50]]; // Wesley Ivan Hurt, Jul 12 2025
  • Mathematica
    Table[Sum[i^8 + (n - i)^8, {i, Floor[n/2]}], {n, 40}]
  • PARI
    concat(0, Vec( x^2*(2 + 255*x + 6799*x^2 + 62985*x^3 + 335905*x^4 + 1094715*x^5 + 2500907*x^6 + 3982845*x^7 + 4690633*x^8 + 3982845*x^9 + 2489581*x^10 + 1094715*x^11 + 331859*x^12 + 62985*x^13 + 6553*x^14 + 255*x^15 + x^16) / ((1 - x)^10*(1 + x)^9) + O(x^40))) \\ Colin Barker, Nov 20 2017
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i^8 + (n-i)^8.
From Colin Barker, Nov 20 2017: (Start)
G.f.: x^2*(2 + 255*x + 6799*x^2 + 62985*x^3 + 335905*x^4 + 1094715*x^5 + 2500907*x^6 + 3982845*x^7 + 4690633*x^8 + 3982845*x^9 + 2489581*x^10 + 1094715*x^11 + 331859*x^12 + 62985*x^13 + 6553*x^14 + 255*x^15 + x^16) / ((1 - x)^10*(1 + x)^9).
a(n) = a(n-1) + 9*a(n-2) - 9*a(n-3) - 36*a(n-4) + 36*a(n-5) + 84*a(n-6) - 84*a(n-7) - 126*a(n-8) + 126*a(n-9) + 126*a(n-10) - 126*a(n-11) - 84*a(n-12) + 84*a(n-13) + 36*a(n-14) - 36*a(n-15) - 9*a(n-16) + 9*a(n-17) + a(n-18) - a(n-19) for n>19.
(End)
a(n) = -n*(768-5120*n^2+10752*n^4-15360*n^6+11475*n^7-2560*n^8-45*n^7*(-1)^n)/23040. - Wesley Ivan Hurt, Jul 12 2025

A294276 Sum of the ninth powers of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 513, 20708, 282340, 2255148, 12313161, 52928912, 186884496, 576258110, 1574304985, 3942330372, 9092033028, 19736886008, 40357579185, 78935156288, 147520415296, 266495712282, 464467582161, 788155279940, 1299155279940, 2095793274212, 3300704544313
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), A294275 (k=8), this sequence (k=9), A294279 (k=10).

Programs

  • Magma
    [-n^2*(768-2560*n^2+3584*n^4-3840*n^6+2555*n^7-512*n^8-5*n^7*(-1)^n)/5120 : n in [1..50]]; // Wesley Ivan Hurt, Jul 12 2025
  • Mathematica
    Table[Sum[i^9 + (n - i)^9, {i, Floor[n/2]}], {n, 40}]
  • PARI
    concat(0, Vec(x^2*(2 + 511*x + 20175*x^2 + 256522*x^3 + 1770948*x^4 + 7464688*x^5 + 21796206*x^6 + 45087574*x^7 + 69569484*x^8 + 79813090*x^9 + 69501528*x^10 + 45087574*x^11 + 21722580*x^12 + 7464688*x^13 + 1756842*x^14 + 256522*x^15 + 19674*x^16 + 511*x^17+ x^18) / ((1 - x)^11*(1 + x)^10) + O(x^40))) \\ Colin Barker, Nov 21 2017
    

Formula

a(n) = Sum_{i=1..floor(n/2)} i^9 + (n-i)^9.
From Colin Barker, Nov 21 2017: (Start)
G.f.: x^2*(2 + 511*x + 20175*x^2 + 256522*x^3 + 1770948*x^4 + 7464688*x^5 + 21796206*x^6 + 45087574*x^7 + 69569484*x^8 + 79813090*x^9 + 69501528*x^10 + 45087574*x^11 + 21722580*x^12 + 7464688*x^13 + 1756842*x^14 + 256522*x^15 + 19674*x^16 + 511*x^17+ x^18) / ((1 - x)^11*(1 + x)^10).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - 45*a(n-4) + 45*a(n-5) + 120*a(n-6) - 120*a(n-7) - 210*a(n-8) + 210*a(n-9) + 252*a(n-10) - 252*a(n-11) - 210*a(n-12) + 210*a(n-13) + 120*a(n-14) - 120*a(n-15) - 45*a(n-16) + 45*a(n-17) + 10*a(n-18) - 10*a(n-19) - a(n-20) + a(n-21) for n>21.
(End)
a(n) = -n^2*(768-2560*n^2+3584*n^4-3840*n^6+2555*n^7-512*n^8-5*n^7*(-1)^n)/5120. - Wesley Ivan Hurt, Jul 12 2025

A294279 Sum of the tenth powers of the parts in the partitions of n into two parts.

Original entry on oeis.org

0, 2, 1025, 61098, 1108650, 10933324, 71340451, 354864276, 1427557524, 4924107550, 14914341925, 40912232702, 102769130750, 240910097848, 529882277575, 1107606410024, 2206044295976, 4225524980826, 7792505423049, 13933571680850, 24163571680850, 40869390083652
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 26 2017

Keywords

Crossrefs

Sum of k-th powers of the parts in the partitions of n into two parts for k=0..10: A052928 (k=0), A093353 (k=1), A226141 (k=2), A294270 (k=3), A294271 (k=4), A294272 (k=5), A294273 (k=6), A294274 (k=7), A294275 (k=8), A294276 (k=9), this sequence (k=10).

Programs

  • Magma
    [n*(5120-33792*n^2+67584*n^4-67584*n^6+56320*n^8-33759*n^9+6144*n^10+33*n^9*(-1)^n)/67584 : n in [1..50]]; // Wesley Ivan Hurt, Jul 13 2025
  • Maple
    f:= proc(n)
    if n::even then (1/66)*n*(6*n^10-(16863/512)*n^9+55*n^8-66*n^6+66*n^4-33*n^2+5)
      else (1/66*(n-1))*n*(2*n-1)*(n^2-n-1)*(3*n^6-9*n^5+2*n^4+11*n^3+3*n^2-10*n-5)
    fi end proc:
    map(f, [$1..50]); # Robert Israel, Oct 27 2017
  • Mathematica
    Table[Sum[i^10 + (n - i)^10, {i, Floor[n/2]}], {n, 30}]

Formula

a(n) = Sum_{i=1..floor(n/2)} i^10 + (n-i)^10.
From Robert Israel, Oct 27 2017: (Start)
a(2*k) = (6144*k^10-16863*k^9+14080*k^8-4224*k^6+1056*k^4-132*k^2+5)*k/33.
a(2*k+1) = (6144*k^10+16896*k^9+14080*k^8-4224*k^6+1056*k^4-132*k^2+5)*k/33.
G.f.: x^2*(x^20+1023*x^19+59039*x^18+1036299*x^17+9117154*x^16+48940320*x^15
+178348744*x^14+465661416*x^13+907378474*x^12+1340492142*x^11+1528402822*x^10
+1340492142*x^9+908233636*x^8+465661416*x^7+178756096*x^6+48940320*x^5
+9163981*x^4+1036299*x^3+60051*x^2+1023*x+2)/((x^2-1)^11*(x-1)). (End)
a(n) = n*(5120-33792*n^2+67584*n^4-67584*n^6+56320*n^8-33759*n^9+6144*n^10+33*n^9*(-1)^n)/67584. - Wesley Ivan Hurt, Jul 13 2025
a(n) = a(n-1) + 11*a(n-2) - 11*a(n-3) - 55*a(n-4) + 55*a(n-5) + 165*a(n-6) - 165*a(n-7) - 330*a(n-8) + 330*a(n-9) + 462*a(n-10) - 462*a(n-11) - 462*a(n-12) + 462*a(n-13) + 330*a(n-14) - 330*a(n-15) - 165*a(n-16) + 165*a(n-17) + 55*a(n-18) - 55*a(n-19) - 11*a(n-20) + 11*a(n-21) + a(n-22) - a(n-23). - Wesley Ivan Hurt, Jul 13 2025

A265225 Total number of ON (black) cells after n iterations of the "Rule 54" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 4, 6, 12, 15, 24, 28, 40, 45, 60, 66, 84, 91, 112, 120, 144, 153, 180, 190, 220, 231, 264, 276, 312, 325, 364, 378, 420, 435, 480, 496, 544, 561, 612, 630, 684, 703, 760, 780, 840, 861, 924, 946, 1012, 1035, 1104, 1128, 1200, 1225, 1300, 1326, 1404, 1431
Offset: 0

Views

Author

Robert Price, Dec 05 2015

Keywords

Comments

Take the first 2n positive integers and choose n of them such that their sum: a) is divisible by n, and b) is minimal. It seems their sum equals a(n). - Ivan N. Ianakiev, Feb 16 2019

Examples

			From _Michael De Vlieger_, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
                        1                          =  1 ->  1
                      1 1 1                        =  3 ->  4
                    1 . . . 1                      =  2 ->  6
                  1 1 1 . 1 1 1                    =  6 -> 12
                1 . . . 1 . . . 1                  =  3 -> 15
              1 1 1 . 1 1 1 . 1 1 1                =  9 -> 24
            1 . . . 1 . . . 1 . . . 1              =  4 -> 28
          1 1 1 . 1 1 1 . 1 1 1 . 1 1 1            = 12 -> 40
        1 . . . 1 . . . 1 . . . 1 . . . 1          =  5 -> 45
      1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1        = 15 -> 60
    1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1      =  6 -> 66
  1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1    = 18 -> 84
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1  =  7 -> 91
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Maple
    A265225:=n->1/4*(n+1)*(2*n-(-1)^n+5): seq(A265225(n), n=0..60); # Wesley Ivan Hurt, Dec 25 2016
  • Mathematica
    rule = 54; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule,{{1},0},rows-1,{All,All}][[k]],{rows-k+1,rows+k-1}],{k,1,rows}][[k]]],{k,1,rows}],k]],{k,1,rows}]
    Accumulate[Total /@ CellularAutomaton[54, {{1}, 0}, 52]]

Formula

Conjectures from Colin Barker, Dec 08 2015 and Apr 20 2019: (Start)
a(n) = (n+1)*(2*n -(-1)^n +5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: (1+3*x) / ((1-x)^3*(1+x)^2).
(End)
a(n) = n + 1 + (n+1) * floor((n+1)/2), conjectured. - Wesley Ivan Hurt, Dec 25 2016
a(n) = A093353(n) + n + 1, conjectured. - Matej Veselovac, Jan 21 2020

A211374 Product of all the parts in the partitions of n into exactly 2 parts.

Original entry on oeis.org

1, 1, 2, 12, 24, 360, 720, 20160, 40320, 1814400, 3628800, 239500800, 479001600, 43589145600, 87178291200, 10461394944000, 20922789888000, 3201186852864000, 6402373705728000, 1216451004088320000, 2432902008176640000, 562000363888803840000
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 06 2013

Keywords

Examples

			Define a(1):=1; a(2) = 1 since 2 = 1+1 and (1)*(1) = 1; a(3) = 2 since 3 = 2+1 and (2)*(1) = 2; a(4) = 12 since 4 = 3+1 = 2+2 and (3)*(1)*(2)*(2) = 12; a(5) = 24 since 5 = 4+1 = 3+2 and (4)*(1)*(3)*(2) = 24.
		

Crossrefs

Programs

  • Magma
    [(Factorial(n-1) * Factorial(Floor(n/2)))/Factorial(n-1-Floor(n/2)) : n in [1..25]]; // Wesley Ivan Hurt, Oct 16 2014
    
  • Maple
    A211374:=n->( (n-1)! * floor(n/2)! )/( (n-1) - floor(n/2) )!: seq(A211374(k), k=1..25);
    with(combinat, numbperm): seq(numbperm(k-1, floor(k/2))*floor(k/2)!, k = 1..25); # Wesley Ivan Hurt, Jun 07 2013
  • Mathematica
    Table[Times @@ Flatten[Select[Partitions[n], Length[#] == 2 &]], {n, 25}] (* T. D. Noe, Feb 11 2013 *)
    Table[((n - 1)!*Floor[n/2]!)/(n - 1 - Floor[n/2])!, {n, 25}] (* Wesley Ivan Hurt, Oct 16 2014 *)
  • PARI
    a(n) = prod(i=1, n\2, i*(n-i)); \\ Michel Marcus, Nov 14 2017

Formula

a(n) = ( (n-1)! * floor(n/2)! )/( n-1-floor(n/2) )!.
a(n) = P(n-1, floor(n/2)) * floor(n/2)!, where P(n,k) are the k-permutations of n objects. - Wesley Ivan Hurt, Jun 07 2013
a(2n) = A002674(n); a(2n+1) = A010050(n). - Wesley Ivan Hurt, Oct 16 2014
a(n) = Product_{i=1..floor(n/2)} i * (n-i). - Wesley Ivan Hurt, Nov 14 2017
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=1} 1/a(n) = 3*cosh(1) - 2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - cosh(1). (End)

A242669 a(n) = n*floor(n/3).

Original entry on oeis.org

0, 0, 0, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 108, 114, 120, 147, 154, 161, 192, 200, 208, 243, 252, 261, 300, 310, 320, 363, 374, 385, 432, 444, 456, 507, 520, 533, 588, 602, 616, 675, 690, 705, 768, 784, 800, 867, 884, 901, 972, 990
Offset: 0

Views

Author

Bruno Berselli, Jul 01 2014

Keywords

Comments

For n = 0, 1, 2, 4, 8, 49, 98, 676, 1352, 9409, 18818, 131044, 262088, 1825201, 3650402, ... a(n) is a square.

Crossrefs

Cf. A000290 (n^2), A010762 (floor(n/2)*floor(n/3)), A093353 (n*floor(n/2)), A213033 (n*floor(n/2)*floor(n/3)), A233035 (n*floor(n/4)).
Cf. A002264 (floor(n/3)).

Programs

  • Magma
    [n*Floor(n/3): n in [0..60]];
    
  • Mathematica
    Table[n Floor[n/3], {n, 0, 60}]
  • PARI
    a(n)=n\3*n \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [n*floor(n/3) for n in (0..60)];
    

Formula

G.f.: x^3*(3 + x + x^2 + x^3)/((1 - x)^3*(1 + x + x^2)^2).
a(3m) = A033428(m), a(3m+1) = A049451(m), a(3m+2) = A045944(m).
Sum_{n>=3} (-1)^(n+1)/a(n) = 9/4 + Pi^2/36 - Pi/(2*sqrt(3)) - 2*log(2). - Amiram Eldar, Mar 30 2023

A128623 Triangle read by rows: A128621 * A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 2, 6, 3, 3, 8, 8, 4, 4, 15, 10, 10, 5, 5, 18, 18, 12, 12, 6, 6, 28, 21, 21, 14, 14, 7, 7, 32, 32, 24, 24, 16, 16, 8, 8, 45, 36, 36, 27, 27, 18, 18, 9, 9, 50, 50, 40, 40, 30, 30, 20, 20, 10, 10, 66, 55, 55, 44, 44, 33, 33, 22, 22, 11, 11, 72, 72, 60, 60, 48, 48, 36, 36, 24, 24, 12, 12, 91, 78, 78, 65, 65, 52, 52, 39, 39, 26, 26, 13, 13
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   2,  2;
   6,  3,  3;
   8,  8,  4,  4;
  15, 10, 10,  5,  5;
  18, 18, 12, 12,  6, 6;
  28, 21, 21, 14, 14, 7, 7;
  ...
		

Crossrefs

Programs

  • Magma
    [n*Floor((n-k+2)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
    
  • Mathematica
    Table[n*Floor[(n-k+2)/2], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
  • SageMath
    flatten([[n*((n-k+2)//2) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 13 2024

Formula

Sum_{k=1..n} T(n, k) = A128624(n) (row sums).
T(n,k) = n*(1+floor((n-k)/2)), 1 <= k <= n. - R. J. Mathar, Jun 27 2012
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*A115514(n, k).
T(n, k) = Sum_{j=k..n} A128621(n, j).
T(n, 1) = A093005(n).
T(n, 2) = A093353(n-1), n >= 2.
T(n, n) = A000027(n).
T(2*n-1, n) = A245524(n).
Sum_{k=1..n} (-1)^k*T(n, k) = (1/2)*(1-(-1)^n)*A000384(floor((n+1)/2)). (End)

Extensions

a(41) = 27 inserted and more terms from Georg Fischer, Jun 05 2023

A171769 Partial sums of A042964 (numbers congruent to 2 or 3 mod 4).

Original entry on oeis.org

2, 5, 11, 18, 28, 39, 53, 68, 86, 105, 127, 150, 176, 203, 233, 264, 298, 333, 371, 410, 452, 495, 541, 588, 638, 689, 743, 798, 856, 915, 977, 1040, 1106, 1173, 1243, 1314, 1388, 1463, 1541, 1620, 1702, 1785, 1871, 1958, 2048, 2139, 2233, 2328, 2426, 2525
Offset: 1

Views

Author

Jaroslav Krizek, Dec 18 2009

Keywords

Comments

If we insert an initial 0, and alternate the signs: 0,2,-5,11,-18,28,..., we get a sequence where the average of the first n terms is an integer, with no repeats: specifically A001057(n-1). The sum of the first n terms is (-1)^(n-1)*A093353(n-1). - Franklin T. Adams-Watters, May 20 2010
Suppose that n cards have the numbers 1..2n written on them randomly, one number to a side, and are set out on a table randomly. You have the task of maximizing the sum of the visible numbers by flipping cards. If you have no information other than the numbers on the upper faces, and may not flip any particular card more than once, a(n) is the largest sum you can guarantee in the worst case. - Andrew Woods, Jun 06 2013

Crossrefs

Programs

  • GAP
    a:=[2,5,11,18];; for n in [5..60] do a[n]:=2*a[n-1]-2*a[n-3] + a[n-4]; od; a; # G. C. Greubel, Jul 02 2019
  • Magma
    [Ceiling((2*n+1)*n/2): n in [1..60]]; // Vincenzo Librandi, Jul 02 2019
    
  • Mathematica
    a[n_]:=Ceiling[((2n+1)n/2)]; Array[a, 60] (* Vincenzo Librandi, Jul 02 2019 *)
    LinearRecurrence[{2,0,-2,1}, {2,5,11,18}, 60] (* G. C. Greubel, Jul 02 2019 *)
  • PARI
    Vec(x*(x^2+x+2)/((1-x)^3*(x+1)) + O(x^60)) \\ Colin Barker, Jun 04 2014
    
  • Sage
    [ceiling(n*(1+2*n)/2) for n in (1..60)] # G. C. Greubel, Jul 02 2019
    

Formula

a(n) = Sum_{i=1..n} A042964(i).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - R. H. Hardin, Nov 13 2011
a(n) = ceiling((2*n+1)*n/2). - Andrew Woods, Jun 06 2013
G.f.: x*(2+x+x^2) / ((1-x)^3*(x+1)). - Colin Barker, Jun 04 2014
a(n) = round(n/(1-exp(-1/n))). - Richard R. Forberg, Jan 28 2015

A379726 Minimum number of kings that must be placed on an n X n chessboard such that each square is attacked or occupied by at least two kings.

Original entry on oeis.org

2, 3, 8, 8, 10, 18, 18, 21, 32, 32, 36, 50, 50, 55, 72, 72, 78, 98, 98, 105, 128, 128, 136, 162, 162, 171, 200, 200, 210, 242, 242, 253, 288, 288, 300, 338, 338, 351, 392, 392, 406, 450, 450, 465, 512, 512, 528, 578, 578, 595, 648, 648, 666, 722, 722, 741, 800, 800, 820, 882, 882, 903, 968, 968, 990, 1058, 1058, 1081, 1152, 1152, 1176, 1250, 1250, 1275, 1352, 1352, 1378, 1458, 1458, 1485, 1568, 1568, 1596, 1682, 1682, 1711, 1800, 1800, 1830, 1922, 1922, 1953, 2048, 2048, 2080, 2178, 2178, 2211, 2312
Offset: 2

Views

Author

Matthew Scroggs, Dec 31 2024

Keywords

Comments

At most one king can be placed on each square.
Every third term is conjectured to be A014105. Other terms are A001105. A093353 is conjectured to be this sequence with repeated terms removed.
The above conjectures are true (see Beveridge link). - Colin Beveridge, Jan 13 2025

Examples

			For a 3 by 3 chessboard, the three kings could be placed like this (where o is an empty square and k is a king):
   ooo
   kkk
   ooo
For a 4 by 4 chessboard, the kings could be placed like this:
   oooo
   kkkk
   okko
   okko
		

Crossrefs

Formula

If n is not a multiple of 3, a(n) = 2*floor((n+2)/3)^2.
If n is a multiple of 3, it is conjectured that a(n)=2*(n/3)^2+n/3.
The above conjectures are true (see Beveridge link). - Colin Beveridge, Jan 13 2025

Extensions

a(15)-a(100) via integer linear programming by Rob Pratt, Jan 02 2025
Previous Showing 11-20 of 26 results. Next