A256824
Reverse concatenation of distinct digits of all divisors of n in base 10.
Original entry on oeis.org
1, 21, 31, 421, 51, 6321, 71, 8421, 931, 5210, 1, 64321, 31, 7421, 531, 86421, 71, 986321, 91, 54210, 7321, 21, 321, 864321, 521, 6321, 97321, 87421, 921, 653210, 31, 864321, 31, 74321, 7531, 9864321, 731, 98321, 931, 854210, 41, 764321, 431, 421, 95431, 64321
Offset: 1
For n = 12; list of divisors of 12 in base 10: 1, 2, 3, 4, 6, 12 contains five distinct digits (1, 2, 3, 4, 6) whose reverse concatenation is 64321.
-
[Seqint(Setseq(Set(Sort(&cat[Intseq(d): d in Divisors(n)])))): n in [1..100]];
-
Table[FromDigits[Reverse[Union[Flatten[IntegerDigits[Divisors[n]]]]]],{n,100}] (* Ivan N. Ianakiev, Apr 14 2015 *)
-
a(n) = {my(v = []); fordiv(n, d, v = vecsort(concat(v, digits(d)),,8)); subst(Polrev(v), x, 10);} \\ Michel Marcus, Apr 11 2015
A243543
Smallest number whose list of divisors contains n distinct digits (in base 10).
Original entry on oeis.org
1, 2, 4, 6, 12, 18, 36, 72, 54, 108
Offset: 1
a(9) = 54 because 54 is the smallest number whose list of divisors contains 9 distinct digits; the list of divisors of 54: (1, 2, 3, 6, 9, 18, 27, 54) contains 9 distinct digits (1, 2, 3, 4, 5, 6, 7, 8, 9).
A059436
Smallest number whose set of divisors contains each digit 0-9 at least n times.
Original entry on oeis.org
108, 540, 1140, 1890, 3420, 5460, 7980, 11760, 16380, 23520, 23520, 23760, 38220, 38220, 41580, 41580, 41580, 71820, 71820, 71820, 83160, 83160, 83160, 124740, 124740, 143640, 166320, 166320, 249480, 249480, 249480, 249480, 311220, 335160, 415800, 415800, 415800, 415800, 415800, 415800
Offset: 1
The divisors of 540 are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540 and every digit appears at least twice in this list.
-
import Data.List (group, sort)
a059436 n = head [x | x <- [1..],
let dds = map length $ group $ sort $ concatMap show $ a027750_row x,
minimum dds == n, length dds == 10]
-- Reinhard Zumkeller, Feb 04 2012
-
T = 0*Range[25]; Do[d = Last /@ Tally@ Flatten[ IntegerDigits /@ Divisors@ n]; If[Length@d == 10, m = Min[25, d]; While[m > 0 && (T[[m]] == 0 || n < T[[m]]), T[[m--]] = n]], {n, 125000}]; T (* Giovanni Resta, May 15 2016 *)
sded[n_]:=With[{fid=Flatten[IntegerDigits/@Divisors[n]]},If[Length[Union[fid]]==10,{n,Min[ Tally[fid][[;;,2]]]},Nothing]]; Table[SelectFirst[sded/@Range[500000],#[[2]]>k&],{k,0,39}][[;;,1]] (* Harvey P. Dale, Mar 27 2024 *)
A256825
Numbers with digits in strictly decreasing order containing digit 1.
Original entry on oeis.org
1, 10, 21, 31, 41, 51, 61, 71, 81, 91, 210, 310, 321, 410, 421, 431, 510, 521, 531, 541, 610, 621, 631, 641, 651, 710, 721, 731, 741, 751, 761, 810, 821, 831, 841, 851, 861, 871, 910, 921, 931, 941, 951, 961, 971, 981, 3210, 4210, 4310, 4321, 5210, 5310, 5321
Offset: 1
21 is in sequence because there are numbers m such that A256824(m) = 21 (for m = 2, 22, 121, 211, 2111, ...).
-
[Row n = 1 … 1023; Column A: A(n) = A009995(n); Column B: B(n) = =IF(FIND("1";A(n);1)>0;A(n)); Arrangement of column B]
-
lista(nn) = for (n=1, nn, if ((d = digits(n)) && ((sd=vecsort(d,,8))==Vecrev(d)) && vecsearch(sd, 1), print1(n, ", "))); \\ Michel Marcus, Apr 11 2015
A256826
a(n) = the smallest number k such that A256824(k) = A256825(n).
Original entry on oeis.org
1, 101, 2, 3, 41, 5, 61, 7, 181, 19, 202, 103, 23, 401, 4, 43, 505, 25, 15, 451, 601, 122, 163, 461, 1661, 107, 127, 37, 47, 157, 67, 1801, 281, 83, 1481, 5581, 1861, 187, 109, 29, 9, 149, 59, 619, 79, 89, 2003, 404, 403, 123, 10, 503, 115, 4051, 12451, 453
Offset: 1
a(11) = 202 because 202 is the smallest number k such that reverse concatenation of distinct digits of all divisors of k (i.e. 1, 2, 101, 202) in base 10 = A256824(k) = A256824(202) = A256825(11) = 210.
A345390
Numbers whose set of divisors contains every digit at least twice.
Original entry on oeis.org
540, 720, 760, 810, 918, 1080, 1140, 1170, 1260, 1404, 1440, 1512, 1520, 1530, 1560, 1620, 1740, 1800, 1820, 1824, 1836, 1872, 1890, 1908, 1960, 2016, 2028, 2052, 2070, 2072, 2088, 2106, 2112, 2124, 2142, 2156, 2160, 2184, 2208, 2280, 2340, 2380, 2430, 2508, 2520
Offset: 1
The divisors of 918 are 1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, and 918. Every digit appears at least twice. Thus, 918 is in this sequence.
-
q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>1))(add(x^i, i=
map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
select(q, [$10..2600])[]; # Alois P. Heinz, Apr 21 2022
-
Select[Range[3000], Length[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] > 1 &]
-
from sympy import divisors
def ok(n):
digits_used = {d:0 for d in "0123456789"}
for div in divisors(n, generator=True):
for d in str(div): digits_used[d] += 1
if all(digits_used[d] > 1 for d in "0123456789"): return True
return False
print([k for k in range(2521) if ok(k)]) # Michael S. Branicky, Jun 25 2022
A353066
Numbers whose set of divisors contains every digit at least three times.
Original entry on oeis.org
1140, 1890, 2280, 2340, 2610, 2660, 2700, 2808, 2880, 2940, 2970, 3420, 3480, 3510, 3540, 3600, 3654, 3672, 3780, 3870, 3920, 3952, 3990, 4032, 4140, 4320, 4368, 4380, 4410, 4560, 4590, 4680, 4740, 4760, 4770, 4860, 4896, 4940, 4950, 5130, 5220, 5320, 5400, 5454
Offset: 1
The divisors of 1140 are: 1, 2, 3, 4, 5, 6, 10, 12, 15, 19, 20, 30, 38, 57, 60, 76, 95, 114, 190, 228, 285, 380, 570, 1140. Digits tally from 0 to 9: 8, 10, 6, 4, 3, 6, 3, 3, 4, 3. The minimum is 3, thus, 1140 is in this sequence.
Subsequence of
A095050 (at least once) and of
A345390 (at least twice).
-
q:= n-> (p-> is(min(seq(coeff(p, x, j), j=0..9))>2))(add(x^i, i=
map(d-> convert(d, base, 10)[], [numtheory[divisors](n)[]]))):
select(q, [$10..5555])[]; # Alois P. Heinz, Apr 21 2022
-
Select[Range[10000], Length[Tally[Flatten[IntegerDigits[Divisors[#]]]]] == 10 && Min[Transpose[Tally[Flatten[IntegerDigits[Divisors[#]]]]][[2]]] >= 3 &]
-
upto(n) = { my(v = vector(n, i, -1)); for(i = 1, n, if(v[i] == -1, c = is(i); if(c == 1, v[i] = 1; for(j = 1, n\i, v[i*j] = 1; ) , v[i] = 0 ) ) ); Vec(select(x->x==1,v,1)) }
is(n) = { my(v = vector(10, i, 3), d = divisors(n), todo = 30, i, j); for(i = 1, #d, dd = digits(d[i]); for(j = 1, #dd, if(v[dd[j]+1] > 0, v[dd[j]+1]--; todo--; if(todo <= 0, return(1) ) ) ) ); 0 } \\ David A. Corneth, Jul 11 2022
-
from sympy import divisors
def ok(n):
counts = [0]*10
for d in divisors(n, generator=True):
for di in str(d): counts[int(di)] += 1
if min(counts) > 2: return True
return False
print([k for k in range(5455) if ok(k)]) # Michael S. Branicky, Apr 21 2022
Comments