A195616
Denominators of Pythagorean approximations to 3.
Original entry on oeis.org
12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1
-
I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
r = 3; z = 20;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195616, A195617 *)
Sqrt[a^2 + b^2] (* A097315 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
-
Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
-
A085447=BinaryRecurrenceSequence(6,1,2,6)
[(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
A249457
The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.
Original entry on oeis.org
10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0
Cf.
A005032,
A049310,
A078986,
A097315,
A169364,
A240926,
A247335,
A247512,
A248834,
A249458,
A249862.
-
I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
print1(round(dn/r),", ");
)
}
-
x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
Edited. Name and comment small changes, keyword easy added. -
Wolfdieter Lang, Nov 07 2014
A195617
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.
Original entry on oeis.org
35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1
-
I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
-
Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
-
A085447=BinaryRecurrenceSequence(6,1,2,6)
[(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
A248834
The numerator of curvature of touching circles inscribed in a special way in the smaller segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
Original entry on oeis.org
15, 25, 245, 3025, 39605, 525625, 6997445, 93219025, 1242045605, 16549536025, 220514700245, 2938258798225, 39150987330005, 521669482807225, 6951013841444645, 92619168339300625, 1234109231890228805, 16443956730548563225, 219108411138085022645, 2919522145350504838225
Offset: 0
-
{
r=0.4;print1(round(6/r),", ");r1=r;dn=1;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round((6/r)*dn),", ");
dn=dn*3
)
}
A249458
The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.
Original entry on oeis.org
10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0
Cf.
A240926,
A078986,
A097315,
A247512,
A247335,
A247512,
A248834,
A169634,
A249457,
A049310,
A249863,
A249864.
-
I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
-
LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
print1(round(dn/r),", ");
)
}
-
x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
Edited. In name and comment small changes, keyword easy and crossrefs added. -
Wolfdieter Lang, Nov 08 2014
A382209
Numbers k such that 10+k and 10*k are perfect squares.
Original entry on oeis.org
90, 136890, 197402490, 284654260890, 410471246808090, 591899253243012090, 853518312705176632890, 1230772815021611461622490, 1774773545742851022483004890, 2559222222188376152809031436090, 3690396669622092669499600847844090, 5321549438372835441042271613559748890
Offset: 1
90 is a term because 10+90=100 is a square and 10*90=900 is a square.
(3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90.
Cf. 5*
A075796^2 (5+k and 5*k are squares).
Cf. 5*
A081071 (20+k and 20*k are squares).
Cf.
A245226 (m such that k+m and k*m are squares).
-
CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* James C. McMahon, May 08 2025 *)
-
from itertools import islice
def A382209_gen(): # generator of terms
x, y = 30, 10
while True:
yield x**2//10
x, y = x*19+y*60, x*6+y*19
A382209_list = list(islice(A382209_gen(),30)) # Chai Wah Wu, Apr 24 2025
A157881
Expansion of 152*x^2 / (-x^3+1443*x^2-1443*x+1).
Original entry on oeis.org
0, 152, 219336, 316282512, 456079163120, 657665836936680, 948353680783529592, 1367525350024012735136, 1971970606380945580536672, 2843580246875973503121146040, 4100440744024547410555112053160, 5912832709303150490046968459510832
Offset: 1
-
LinearRecurrence[{1443,-1443,1},{0,152,219336},20] (* Harvey P. Dale, Jul 18 2019 *)
-
concat(0, Vec(152*x^2/(-x^3+1443*x^2-1443*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
-
a(n) = round(-((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360) \\ Colin Barker, Jul 25 2016
A248833
The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
Original entry on oeis.org
10, 25, 160, 1225, 9610, 75625, 595360, 4687225, 36902410, 290532025, 2287353760, 18008298025, 141779030410, 1116223945225, 8788012531360, 69187876305625, 544714997913610, 4288532107003225, 33763541858112160, 265819802757894025, 2092794880205040010, 16476539238882426025
Offset: 0
-
I:=[10,25,160]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 29 2014
-
CoefficientList[Series[- 5 (5 x^2 - 13 x + 2)/((x - 1) (x^2 - 8 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2014 *)
LinearRecurrence[{9,-9,1}, {10,25,160}, 30] (* G. C. Greubel, Dec 20 2017 *)
-
{
r=0.6;print1(round(6/r),", ");r1=r;
for (n=1,40,
if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round(6/r),", ");
)
}
-
Vec(-5*(5*x^2-13*x+2)/((x-1)*(x^2-8*x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
A226694
Pell equation solutions (32*a(n))^2 - 41*(5*b(n))^2 = -1 with b(n) := A226695(n), n>=0.
Original entry on oeis.org
1, 4099, 16797701, 68836974599, 282093905109001, 1156020754299711499, 4737372769026312613901, 19413752451449074792054799, 79557552808665539471527952401, 326026831996158929305246756884499, 1336057877962706483627361738184724501
Offset: 0
Pell n=0: 32^2 - 41*5^2 = -1.
Pell n=1: (32*4099)^2 - 41*(5*4097)^2 = -1.
-
LinearRecurrence[{4098,-1},{1,4099},20] (* Harvey P. Dale, Sep 23 2017 *)
A309330
Numbers k such that 10*k^2 + 40 is a square.
Original entry on oeis.org
6, 234, 8886, 337434, 12813606, 486579594, 18477210966, 701647437114, 26644125399366, 1011775117738794, 38420810348674806, 1458979018131903834, 55402781878663670886, 2103846732371087589834, 79890773048222664742806
Offset: 1
a(2) = 234, and 10*234^2 + 40 is indeed a perfect square (it's 740^2) and furthermore the continued fraction [234, 234, 234, 234, ...] equals 117 + 37*sqrt(10), which is indeed in Q(sqrt(10)).
-
LinearRecurrence[{38, -1}, {6, 234}, 15]
-
Vec(6*x*(1 + x) / (1 - 38*x + x^2) + O(x^20)) \\ Colin Barker, Jul 24 2019
Comments