cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A195616 Denominators of Pythagorean approximations to 3.

Original entry on oeis.org

12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Magma
    I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    r = 3; z = 20;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195616, A195617 *)
    Sqrt[a^2 + b^2] (* A097315 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
    Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    A085447=BinaryRecurrenceSequence(6,1,2,6)
    [(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: 12*x / ((1+x)*(1-38*x+x^2)). (End)
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = (3/10)*(A097314(n) + (-1)^n).
a(n) = (1/20)*(A085447(2*n+1) - 6*(-1)^n). (End)

A249457 The numerator of curvatures of touching circles inscribed in a special way in the larger segment of a unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 2890, 96100, 3237610, 109202500, 3683712490, 124263300100, 4191798484810, 141402777864100, 4769968258260490, 160906295771812900, 5427884341892493610, 183099910962324064900, 6176546013641762558890, 208354665265158340802500, 7028469704892605715408010
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A005032.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the larger sagitta has length 7/5. The input, besides the unit circle C, is the circle C_0 with radius R_0 = 7/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n).
If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 3/5), the rational sequence would be A249458/A169634. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the larger segment see a comment under A249862. C_n = (5/7)*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 07 2014

Crossrefs

Programs

  • Magma
    I:=[10,100,2890]; [n le 3 select I[n] else 37*Self(n-1) - 111*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{37, -111, 27},{10, 100, 2890},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.7;dn=7;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*3;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(30*x^2-27*x+1) /((3*x - 1)*(9*x^2-34*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 07 2014: (Start)
a(n) = 5*(A249862(n) + 3^n) = 5*3^n*(S(n, 34/3) - (17/3)*S(n-1, 34/3) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249862 for the proof.
O.g.f.: 5*((1 - 17*x)/(1 - 34*x + 9*x^2) + 1/(1-3*x)) = 10*(1 - 27*x + 30*x^2)/((1 - 34*x + 9*x^2)*(1 - 3*x)) proving the conjecture of Colin Barker above. (End)
E.g.f.: 5*exp(3*x)*(1 + exp(14*x)*cosh(2*sqrt(70)*x)). - Stefano Spezia, Mar 24 2023

Extensions

Edited. Name and comment small changes, keyword easy added. - Wolfdieter Lang, Nov 07 2014
a(16) from Stefano Spezia, Mar 24 2023

A195617 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.

Original entry on oeis.org

35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195616 for Mathematica program.

Crossrefs

Programs

  • Magma
    I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    A085447=BinaryRecurrenceSequence(6,1,2,6)
    [(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: x*(35+38*x-x^2) / ((1+x)*(1-38*x+x^2)). (End)
a(n) = (1/20)*(3*A085447(2*n+1) + 2*(-1)^n). - G. C. Greubel, Feb 13 2023

A248834 The numerator of curvature of touching circles inscribed in a special way in the smaller segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).

Original entry on oeis.org

15, 25, 245, 3025, 39605, 525625, 6997445, 93219025, 1242045605, 16549536025, 220514700245, 2938258798225, 39150987330005, 521669482807225, 6951013841444645, 92619168339300625, 1234109231890228805, 16443956730548563225, 219108411138085022645, 2919522145350504838225
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 15 2014

Keywords

Comments

Refer to comment of A240926. Consider a circle C of radius 1/6 (in some length units) with a chord of length sqrt(8/75). This has been chosen such that the smaller sagitta has length 2/15. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/15, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n). The denominator is A000244 for n > 0. If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 1/5), the sequence would be A248833. See an illustration given in the link.

Crossrefs

Programs

  • PARI
    {
    r=0.4;print1(round(6/r),", ");r1=r;dn=1;
    for (n=1,40,
    if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
    ac=sqrt(ab^2-r^2);
    if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
    b=acos(r/ab)-z;
    r=r*(1-cos(b))/(1+cos(b));
    print1(round((6/r)*dn),", ");
    dn=dn*3
    )
    }

Formula

Conjecture: a(n) = 17*a(n-1) - 51*a(n-2) + 27*a(n-3) for n > 3. - Colin Barker, Oct 15 2014
Empirical g.f.: 5*(54*x^3-117*x^2+46*x-3) / ((3*x-1)*(9*x^2-14*x+1)). - Colin Barker, Oct 15 2014

A249458 The numerators of curvatures of touching circles inscribed in a special way in the smaller segment of unit circle divided by a chord of length sqrt(84)/5.

Original entry on oeis.org

10, 100, 1690, 36100, 835210, 19802500, 472931290, 11318832100, 271066588810, 6492762648100, 155527144782490, 3725543446072900, 89243180863948810, 2137770243127864900, 51209104645650371290, 1226685938180259902500
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 29 2014

Keywords

Comments

The denominators are conjectured to be A169634.
Refer to comments and links of A240926. Consider a unit circle with a chord of length sqrt(84)/5. This has been chosen such that the smaller sagitta has length 3/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 3/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle is C_n = 1/R_n, n >= 0, and its numerator is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the larger segment (sagitta length 7/5), the sequence would be A249457/A005032. See an illustration given in the link.
For the proof and the formula for the rational curvatures of the circles in the smaller segment see a comment under A249864. C_n = (5/(3*7))*(7*S(n, 26/7) - 13*S(n-1, 26/7) + 7), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Nov 08 2014

Crossrefs

Programs

  • Magma
    I:=[10, 100, 1690]; [n le 3 select I[n] else 33*Self(n-1) - 231*Self(n-2) + 343*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 20 2017
  • Mathematica
    LinearRecurrence[{33, -231, 343},{10, 100, 1690},16] (* Ray Chandler, Aug 11 2015 *)
    CoefficientList[Series[10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)), {x, 0, 50}], x] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.3;dn=3;print1(round(dn/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b)); dn=dn*7;
         print1(round(dn/r),", ");
    )
    }
    
  • PARI
    x='x+O('x^30); Vec(10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x))) \\ G. C. Greubel, Dec 20 2017
    

Formula

Empirical g.f.: -10*(70*x^2-23*x+1) / ((7*x-1)*(49*x^2-26*x+1)). - Colin Barker, Oct 29 2014
From Wolfdieter Lang, Nov 09 2014 (Start)
a(n) = 5*(A249864(n) + 7^n) = (5*7^n)*(S(n, 26/7) - (13/7)*S(n-1, 26/7) + 1), n >= 0, with Chebyshev's S polynomials (A049310). See the comments on A249864 for the proof.
O.g.f.: 5*((1 - 13*x)/(1 - 26*x + (7*x)^2) + 1/(1-7*x)) = 10*(1 - 23*x + 70*x^2)/((1 - 26*x + (7*x)^2)*(1 - 7*x)) proving the conjecture of Colin Barker above. (End)

Extensions

Edited. In name and comment small changes, keyword easy and crossrefs added. - Wolfdieter Lang, Nov 08 2014

A382209 Numbers k such that 10+k and 10*k are perfect squares.

Original entry on oeis.org

90, 136890, 197402490, 284654260890, 410471246808090, 591899253243012090, 853518312705176632890, 1230772815021611461622490, 1774773545742851022483004890, 2559222222188376152809031436090, 3690396669622092669499600847844090, 5321549438372835441042271613559748890
Offset: 1

Views

Author

Emilio Martín, Mar 18 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 1441.99930651839... = 721+228*sqrt(10) = (19+6*sqrt(10))^2.
If 10*A158490(n) is a perfect square, then A158490(n) is a term.

Examples

			90 is a term because 10+90=100 is a square and 10*90=900 is a square.
(3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90.
		

Crossrefs

Subsequence of A158490.
Cf. A383734 = 2*A008843 (2+k and 2*k are squares).
Cf. 5*A075796^2 (5+k and 5*k are squares).
Cf. 5*A081071 (20+k and 20*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* James C. McMahon, May 08 2025 *)
  • Python
    from itertools import islice
    def A382209_gen(): # generator of terms
        x, y = 30, 10
        while True:
            yield x**2//10
            x, y = x*19+y*60, x*6+y*19
    A382209_list = list(islice(A382209_gen(),30)) # Chai Wah Wu, Apr 24 2025

Formula

a(n) = 10 * ((1/2) * (3+sqrt(10))^(2*n-1) + (1/2) * (3-sqrt(10))^(2*n-1))^2.
a(n) = 10 * (sinh((2n-1) * arcsinh(3)))^2.
a(n) = 10 * A173127(n)^2 = 100 * A097315(n)^2 - 10 (negative Pell's equation solutions).
a(n+2) = 1442 * a(n+1) - a(n) + 7200.
G.f.: 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)). - Stefano Spezia, Apr 24 2025

A157881 Expansion of 152*x^2 / (-x^3+1443*x^2-1443*x+1).

Original entry on oeis.org

0, 152, 219336, 316282512, 456079163120, 657665836936680, 948353680783529592, 1367525350024012735136, 1971970606380945580536672, 2843580246875973503121146040, 4100440744024547410555112053160, 5912832709303150490046968459510832
Offset: 1

Views

Author

Paul Weisenhorn, Mar 08 2009, Jun 25 2009

Keywords

Comments

This sequence is part of a solution of a more general problem involving two equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, for details see comment in A157014.
A157881 is the c(n) sequence for A=9.

Crossrefs

8*A157881(n)+1 = A097315(n-1)^2.
9*A157881(n)+1 = A097314(n-1)^2.

Programs

  • Mathematica
    LinearRecurrence[{1443,-1443,1},{0,152,219336},20] (* Harvey P. Dale, Jul 18 2019 *)
  • PARI
    concat(0, Vec(152*x^2/(-x^3+1443*x^2-1443*x+1) + O(x^20))) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    a(n) = round(-((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360) \\ Colin Barker, Jul 25 2016

Formula

G.f.: 152*x^2/(-x^3+1443*x^2-1443*x+1).
c(1) = 0, c(2) = 152, c(3) = 1443*c(2), c(n) = 1443 * (c(n-1)-c(n-2)) + c(n-3) for n>3.
a(n) = -((721+228*sqrt(10))^(-n)*(-1+(721+228*sqrt(10))^n)*(19+6*sqrt(10)+(-19+6*sqrt(10))*(721+228*sqrt(10))^n))/360. - Colin Barker, Jul 25 2016

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A248833 The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).

Original entry on oeis.org

10, 25, 160, 1225, 9610, 75625, 595360, 4687225, 36902410, 290532025, 2287353760, 18008298025, 141779030410, 1116223945225, 8788012531360, 69187876305625, 544714997913610, 4288532107003225, 33763541858112160, 265819802757894025, 2092794880205040010, 16476539238882426025
Offset: 0

Views

Author

Kival Ngaokrajang, Oct 15 2014

Keywords

Comments

Refer to comment of A240926. Consider a circle C of radius 1/6 (in some length units) with a chord of length sqrt(8/75). This has been chosen such that the larger sagitta has length 1/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle, C_n = 1/R_n, n >= 0, is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 2/15), the sequence would be A248834. See an illustration given in the link.

Crossrefs

Programs

  • Magma
    I:=[10,25,160]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 29 2014
  • Mathematica
    CoefficientList[Series[- 5 (5 x^2 - 13 x + 2)/((x - 1) (x^2 - 8 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2014 *)
    LinearRecurrence[{9,-9,1}, {10,25,160}, 30] (* G. C. Greubel, Dec 20 2017 *)
  • PARI
    {
    r=0.6;print1(round(6/r),", ");r1=r;
    for (n=1,40,
         if (n<=1,ab=2-r,ab=sqrt(ac^2+r^2));
         ac=sqrt(ab^2-r^2);
         if (n<=1,z=0,z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r));r1=r);
         b=acos(r/ab)-z;
         r=r*(1-cos(b))/(1+cos(b));
         print1(round(6/r),", ");
    )
    }
    
  • PARI
    Vec(-5*(5*x^2-13*x+2)/((x-1)*(x^2-8*x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
    

Formula

From Colin Barker, Oct 15 2014: (Start)
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: -5*(5*x^2-13*x+2) / ((x-1)*(x^2-8*x+1)). (End)
a(n) = 5*(2+(4-sqrt(15))^n+(4+sqrt(15))^n)/2. - Colin Barker, Mar 03 2016
E.g.f.: 5*exp(x)*(1 + exp(3*x)*cosh(sqrt(15)*x)). - Stefano Spezia, Aug 27 2025

A226694 Pell equation solutions (32*a(n))^2 - 41*(5*b(n))^2 = -1 with b(n) := A226695(n), n>=0.

Original entry on oeis.org

1, 4099, 16797701, 68836974599, 282093905109001, 1156020754299711499, 4737372769026312613901, 19413752451449074792054799, 79557552808665539471527952401, 326026831996158929305246756884499, 1336057877962706483627361738184724501
Offset: 0

Views

Author

Wolfdieter Lang, Jun 20 2013

Keywords

Examples

			Pell n=0: 32^2 - 41*5^2 = -1.
Pell n=1: (32*4099)^2 - 41*(5*4097)^2 = -1.
		

Crossrefs

Cf. A097314, A097315 (Pell -1 with D = 10), A226695.

Programs

  • Mathematica
    LinearRecurrence[{4098,-1},{1,4099},20] (* Harvey P. Dale, Sep 23 2017 *)

Formula

a(n) = S(n,4098)+ S(n-1,4098), n>=0, with the Chebyshev S-polynomials (A049310). 4098 = 17*241 is the smallest positive integer x solution of x^2 - 41*y^2 = +4 with y also positive.
O.g.f.: (1 + x)/(1 - 4098*x + x^2).
a(n) = 4098*a(n-1) - a(n-2), a(-1) = -1 , a(0) = 1.

A309330 Numbers k such that 10*k^2 + 40 is a square.

Original entry on oeis.org

6, 234, 8886, 337434, 12813606, 486579594, 18477210966, 701647437114, 26644125399366, 1011775117738794, 38420810348674806, 1458979018131903834, 55402781878663670886, 2103846732371087589834, 79890773048222664742806
Offset: 1

Views

Author

Greg Dresden, Jul 23 2019

Keywords

Comments

Sequence of all positive integers k such that the continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(10)).
As 10*n^2 + 40 = 10 * (n^2 + 4), n == 6 (mod 10) or n == 4 (mod 10) alternately. - Bernard Schott, Jul 24 2019

Examples

			a(2) = 234, and 10*234^2 + 40 is indeed a perfect square (it's 740^2) and furthermore the continued fraction [234, 234, 234, 234, ...] equals 117 + 37*sqrt(10), which is indeed in Q(sqrt(10)).
		

Crossrefs

Cf. A097315.

Programs

  • Mathematica
    LinearRecurrence[{38, -1}, {6, 234}, 15]
  • PARI
    Vec(6*x*(1 + x) / (1 - 38*x + x^2) + O(x^20)) \\ Colin Barker, Jul 24 2019

Formula

a(n) = 38*a(n-1) - a(n-2); a(1) = 6, a(2) = 234.
a(n) = 2*sqrt(10*A097315(n-1)^2-1).
a(n) = (3-sqrt(10))*(19-6*sqrt(10))^(n-1) + (3+sqrt(10))*(19+6*sqrt(10))^(n-1). - Jinyuan Wang, Jul 24 2019
G.f.: 6*x*(1 + x) / (1 - 38*x + x^2). - Colin Barker, Jul 24 2019
a(n) = 6*A097314(n-1). - R. J. Mathar, Sep 06 2020
Previous Showing 11-20 of 21 results. Next