cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A180874 Lassalle's sequence connected with Catalan numbers and Narayana polynomials.

Original entry on oeis.org

1, 1, 5, 56, 1092, 32670, 1387815, 79389310, 5882844968, 548129834616, 62720089624920, 8646340208462880, 1413380381699497200, 270316008395632253340, 59800308109377016336155, 15151722444639718679892150, 4359147487054262623576455600
Offset: 1

Views

Author

Jonathan Vos Post, Sep 22 2010

Keywords

Comments

Defined by the recurrence formula in Theorem 1, page 2 of Lasalle.
From Tom Copeland, Jan 26 2016: (Start)
Let G(t) = Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp(c.t) be the e.g.f. of the aerated Catalan numbers c_n of A126120.
R = x + H(D) = x + d/dD log[G(D)] = x + D - D^3/3! + 5 D^5/5! - 56 D^7/7! + ... = x + e^(r. D) generates a signed, aerated version of this entry's sequence a(n), (r.)^(2n+1) = r(2n+1) = (-1)^n a(n+1) for n>=0 and r(0) = a(0) = 0, and is, with D = d/dx, the raising operator for the Appell polynomials P(n,x) of A097610, where P(n,x) = (c. + x)^n = Sum{k=0 to n} binomial(n,k) c_k x^(n-k) with c_k = A126120(k), i.e., R P(n,x) = P(n+1,x).
d/dt log[G(t)] = e^(r.t) = e^(q.t) / e^(c.t) = Ev[c. e^(c.t)] / Ev[e^(c.t)] = e^(q.t) e^(d.t) = [Sum_{n>=0} 2n t^(2n-1)/(n!(n+1)!)] / [Sum_{n>=0} t^(2n)/(n!(n+1)!)] with Ev[..] denoting umbral evaluation, so q(n) = c(n+1) = A126120(n+1) and d(2n) = (-1)^n A238390(n) and vanishes otherwise. Then (r. + c.)^n = q(n) = Sum_{k=0..n} binomial(n,k) r(k) c(n-k) and (q. + d.)^n = r(n), relating A180874, A126120 (A000108), and A238390 through binomial convolutions.
The sequence can also be represented in terms of the Faber polynomials of A263916 as a(n) = |(2n-1)! F(2n,0,b(2),0,b(4),0,..)| = |h(2n)| where b(2n) = 1/(n!(n + 1)!) = A126120(2n)/(2n)! = A000108(n)/(2n)!, giving h(0) = 1, h(1) = 0, h(2) = 1, h(3) = 0, h(4) = -1, h(5) = 0, h(6) = 5, h(7) = 0, h(8) = -56, ..., implying, among other relations, that A000108(n/2)= A126120(n) = Bell(n,0,h(2),0,h(4),...), the Bell polynomials of A036040 which reduce to A257490 in this case.
(End)
From Colin Defant, Sep 06 2018: (Start)
a(n) is the number of pairs (rho,r), where rho is a matching on [2n] and r is an acyclic orientation of the crossing graph of rho in which the block containing 1 is the only source (see the Josuat-Verges paper or the Defant-Engen-Miller paper for definitions).
a(n) is the number of permutations of [2n-1] that have exactly 1 preimage under West's stack-sorting map.
a(n) is the number of valid hook configurations of permutations of [2n-1] that have n-1 hooks (see the paper by Defant, Engen, and Miller for definitions).
Say a binary tree is full if every vertex has either 0 or 2 children. If u is a left child in such a tree, then we can start at the sibling of u and travel down left edges until reaching a leaf v. Call v the leftmost nephew of u. A decreasing binary plane tree on [m] is a binary plane tree labeled with the elements of [m] in which every nonroot vertex has a label that is smaller than the label of its parent. a(n) is the number of full decreasing binary plane trees on [2n-1] in which every left child has a label that is larger than the label of its leftmost nephew.
(End)

Crossrefs

Programs

  • Maple
    A000108 := proc(n) binomial(2*n,n)/(1+n) ; end proc:
    A180874 := proc(n) option remember; if n = 1 then 1; else A000108(n)+add((-1)^j*binomial(2*n-1,2*j-1)*procname(j)*A000108(n-j),j=1..n-1) ;   %*(-1)^(n-1) ; end if; end proc: # R. J. Mathar, Apr 16 2011
  • Mathematica
    nmax=20; a = ConstantArray[0,nmax]; a[[1]]=1; Do[a[[n]] = (-1)^(n-1)*(Binomial[2*n,n]/(n+1) + Sum[(-1)^j*Binomial[2n-1,2j-1]*a[[j]]* Binomial[2*(n-j),n-j]/(n-j+1),{j,1,n-1}]),{n,2,nmax}]; a (* Vaclav Kotesovec, Feb 28 2014 *)

Formula

a(n) = (-1)^(n-1) * (C(n)+Sum_{j=1..n-1} (-1)^j *binomial(2n-1,2j-1) * a(j) *C(n-j)), where C() = A000108(). - R. J. Mathar, Apr 17 2011, corrected by Vaclav Kotesovec, Feb 28 2014
E.g.f.: Sum_{k>=0} a(k)*x^(2*k+2)/(2*k+2)! = log(x/BesselJ(1,2*x)). - Sergei N. Gladkovskii, Dec 28 2011
a(n) ~ (n!)^2 / (sqrt(Pi) * n^(3/2) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.917623165132743328576236110539381686855099186384686... - Vaclav Kotesovec, added Feb 28 2014, updated Mar 01 2014
Define E(m,n) by E(1,1) = 1, E(n,n) = 0 for n > 1, and E(m,n) = Sum_{j=1..m} Sum_{i=1..n-m-1} binomial(n-m-1,i-1) * F_j(i+j-1) * F_{m-j}(n-j-i) for 0 <= m < n, where F_m(n) = Sum_{j=m..n} E_j(n). Then a(n) = F_0(2n-1). - Colin Defant, Sep 06 2018

A238390 E.g.f.: x / BesselJ(1, 2*x) (even powers only).

Original entry on oeis.org

1, 1, 4, 35, 546, 13482, 485892, 24108513, 1576676530, 131451399794, 13609184032808, 1712978776719938, 257612765775847132, 45620136452519144700, 9396239458048330569840, 2227147531572856811691105, 601916577165056911293330930, 183994483721828524163677628370
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 01 2014

Keywords

Comments

Aerated, the e.g.f. is e^(a.t) = 1/AC(i*t) = 1/[I_1(2i*t)/(it)] = 1/Sum_{n>=0} (-1)^n t^(2n) / [n!(n+1)!] = a_0 + a_2 t^2/2! + a_4 t^4/4! + ... = 1 + t^2/2! + 4 t^4/4! + 35 t^6/6! + ..., where AC(t) is the e.g.f. for the aerated Catalan numbers c_n of A126120 and I_n(t) are the modified Bessel functions of the first kind (i = sqrt(-1)). The signed, aerated sequence b_n = (i)^n a_n has the e.g.f. e^(b.t) = 1/AC(t) and, therefore, (i*a. + c.)^n = Sum_{k=0..n} binomial(n,k) i^k a_k c_(n-k) vanishes except for n=0 for which it's unity. - Tom Copeland, Jan 23 2016
With q(n) = A126120(n+1) and q(0) = 0, d(2n) = (-1)^n A238390(n) and zero for odd arguments, and r(2n+1) = (-1)^n A180874(n+1) and zero for even arguments, then r(n) = (q. + d.)^n = Sum_{k=0..n} binomial(n,k) q(k) d(n-k), relating these sequences (and A000108) through binomial convolutions. Then also, (r. + c. + d.)^n = r(n). See A180874 for proofs and for relations to A097610. For quick reference, q = (0, 1, 0, 2, 0, 5, 0, 14, ..), d = (1, 0, -1, 0, 4, 0, -35, 0, ..), and r = (0, 1, 0, -1, 0, 5, 0, -56, ..). - Tom Copeland, Jan 28 2016
Aerated and signed, this sequence contains the moments m(n) of the Appell polynomial sequence UMT(n,h1,h2) that is the umbral compositional inverse of the Appell sequence of Motzkin polynomials MT(n,h1,h2) of A097610 with exp[x UMT(.,h1,h2)] = e^(x*h1) / AC(x*y) where y = sqrt(h2) and AC is defined above. UMT(n,h1,h2) = (m.y + h1)^n with (m.)^(2n) = m(2n) = (-1)^n A238390(n) and zero otherwise. Consequently, the associated lower triangular matrices A007318(n,k)*m(n-k) and A007318(n,k)*A126120(n-k) form an inverse pair (cf. also A133314), and MT(n,UMT(.,h1,h2),h2) = h1^n = UMT(n,MT(.,h1,h2),h2). - Tom Copeland, Jan 30 2016

Crossrefs

Programs

  • Maple
    S:= series(x/BesselJ(1,2*x),x,102):
    seq((2*j)!*coeff(S,x,2*j),j=0..50); # Robert Israel, Jan 31 2016
  • Mathematica
    Table[(CoefficientList[Series[x/BesselJ[1, 2*x], {x, 0, 40}], x] * Range[0, 40]!)[[n]], {n, 1, 41, 2}]

Formula

a(n) ~ c * (n!)^2 / (sqrt(n) * r^n), where r = BesselJZero[1, 1]^2/16 = 0.91762316513274332857623611, and c = 1/(Sqrt[Pi]*BesselJ[2, BesselJZero[1, 1]]) = 1.4008104828035425937394082168... - Vaclav Kotesovec, Mar 01 2014, updated Apr 01 2018

A124027 G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying p(k, x) = Sum[p(j, x)*p(k - j, x), {j, 2, k - 1}]. The coefficients of these polynomials give the triangle shown here.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0
Offset: 1

Views

Author

Roger L. Bagula, Oct 31 2006

Keywords

Comments

Row sum sequence: Table[Sum[CoefficientList[p[n, x], x][[m]], {m, 1, Length[CoefficientList[p[n, x], x]]}], {n, 0, 15}] {0, 1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835}

Examples

			Triangular sequence
{0},
{0, 1},
{1},
{0, 1},
{1, 0, 1},
{0, 3, 0, 1},
{2, 0, 6, 0, 1},
{0, 10, 0, 10, 0, 1},
{5, 0, 30, 0, 15, 0, 1},
{0, 35, 0, 70, 0, 21, 0, 1},
{14, 0, 140, 0, 140, 0, 28, 0, 1}
		

References

  • G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.

Crossrefs

See A097610 for another version. Cf. A072851.

Programs

  • Maple
    p := proc(k,x) option remember ; if k = 0 then 0 ; elif k= 1 then x; elif k= 2 then 1; else add(p(j,x)*p(k-j,x),j=2..k-1) ; fi ; end: A124027 := proc(n,k) coeftayl( p(n,x),x=0,k) ; end: printf("0, 0, 1, ") ; for n from 0 to 18 do for k from 0 to n-2 do printf("%d, ",A124027(n,k)) ; od: od: # R. J. Mathar, Oct 08 2007
  • Mathematica
    p[0, x] = 0; p[1, x] = x; p[2, x] = 1; p[k_, x_] := p[k, x] = Sum[p[j, x]*p[k - j, x], {j, 2, k - 1}]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

Formula

p(k, x) = Sum[p(j, x)*p(k - j, x), {j, 2, k - 1}].

Extensions

Edited by N. J. A. Sloane, Oct 07 2007
More terms from R. J. Mathar, Oct 08 2007

A140662 Number of possible column states for self-avoiding polygons in a slit of width n.

Original entry on oeis.org

1, 3, 8, 20, 50, 126, 322, 834, 2187, 5797, 15510, 41834, 113633, 310571, 853466, 2356778, 6536381, 18199283, 50852018, 142547558, 400763222, 1129760414, 3192727796, 9043402500, 25669818475, 73007772801, 208023278208, 593742784828, 1697385471210, 4859761676390
Offset: 1

Views

Author

R. J. Mathar, Jul 11 2008

Keywords

Comments

Number of Dyck (n+1)-paths whose maximum ascent length is 2. - David Scambler, Aug 22 2012
Number of (n+1)-Motzkin-paths with at least one up-step (see A001006 and the Python program). - Peter Luschny, Dec 03 2024

Examples

			The 20 Motzkin-paths of length 5 with at least one up-step are: UUDDF, UUDFD, UUFDD, UDUDF, UDUFD, UDFUD, UDFFF, UFUDD, UFDUD, UFDFF, UFFDF, UFFFD, FUUDD, FUDUD, FUDFF, FUFDF, FUFFD, FFUDF, FFUFD, FFFUD.
		

Crossrefs

Cf. A001006.
Column k=2 of A203717 (shifted).

Programs

  • Maple
    a := n -> n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4)/2:
    seq(simplify(a(n)), n = 1..30);  # Peter Luschny, Dec 03 2024
  • Python
    # A generator of the Motzkin-paths with at least one up-step.
    C = str.count
    def aGen(n: int): # -> Generator[str, Any, list[str]]
        a = [""]
        for w in a:
            if len(w) == n + 1:
                if (C(w, "U") > 0 and C(w, "U") == C(w, "D")): yield w
            else:
                for j in "UDF":
                    u = w + j
                    if C(u, "U") >= C(u, "D"): a += [u]
        return a
    for n in range(1, 6):
        SAP = [w for w in aGen(n)]
        print(len(SAP), ":", SAP)  # Peter Luschny, Dec 03 2024

Formula

a(n) = Sum_{m=1..[(n+1)/2]} (n+1)!/((n+1-2m)!m!(m+1)!).
a(n) = A001006(n + 1) - 1. [Corrected by Peter Luschny, Dec 03 2024]
D-finite with recurrence (n+3)*a(n) + (-4*n-7)*a(n-1) + (2*n+3)*a(n-2) + (4*n-5)*a(n-3) + 3*(-n+2)*a(n-4) = 0. - R. J. Mathar, Nov 01 2021
From Peter Luschny, Dec 03 2024: (Start)
a(n) = (1/2)*n*(n + 1)*hypergeom([1, -n/2 + 1, 1/2 - n/2], [2, 3], 4).
a(n) = n!*[x^n]((exp(x)*(-x^3 + 2*(2*x - 3)*x*BesselI(0,2*x) + (x*(5*x - 4) + 6)*BesselI(1, 2* x)))/x^3). (End)

A247495 Generalized Motzkin numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k](exp(n*x)* BesselI_{1}(2*x)/x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 2, 4, 5, 3, 1, 0, 9, 14, 10, 4, 1, 5, 21, 42, 36, 17, 5, 1, 0, 51, 132, 137, 76, 26, 6, 1, 14, 127, 429, 543, 354, 140, 37, 7, 1, 0, 323, 1430, 2219, 1704, 777, 234, 50, 8, 1, 42, 835, 4862, 9285, 8421, 4425, 1514, 364, 65, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 11 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Motzkin numbers A001006 for two reasons: The case n=1 reduces to the Motzkin numbers and the columns are the values of the Motzkin polynomials M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j evaluated at the nonnegative integers.

Examples

			Square array starts:
[n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]      [8]
[0]   1, 0,  1,   0,    2,    0,     5,      0,      14, ...  A126120
[1]   1, 1,  2,   4,    9,   21,    51,    127,     323, ...  A001006
[2]   1, 2,  5,  14,   42,  132,   429,   1430,    4862, ...  A000108
[3]   1, 3, 10,  36,  137,  543,  2219,   9285,   39587, ...  A002212
[4]   1, 4, 17,  76,  354, 1704,  8421,  42508,  218318, ...  A005572
[5]   1, 5, 26, 140,  777, 4425, 25755, 152675,  919139, ...  A182401
[6]   1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, ...  A025230
A000012,A001477,A002522,A079908, ...
.
Triangular array starts:
              1,
             0, 1,
           1, 1, 1,
          0, 2, 2, 1,
        2, 4, 5, 3, 1,
      0, 9, 14, 10, 4, 1,
   5, 21, 42, 36, 17, 5, 1,
0, 51, 132, 137, 76, 26, 6, 1.
		

Crossrefs

Programs

  • Maple
    # RECURRENCE
    T := proc(n,k) option remember; if k=0 then 1 elif k=1 then n else
    (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) fi end:
    seq(print(seq(T(n,k),k=0..9)),n=0..6);
    # OGF (row)
    ogf := n -> (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2):
    seq(print(seq(coeff(series(ogf(n),x,12),x,k),k=0..9)),n=0..6);
    # EGF (row)
    egf := n -> exp(n*x)*hypergeom([],[2],x^2):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..9)),n=0..6);
    # MOTZKIN polynomial (column)
    A097610 := proc(n,k) if type(n-k,odd) then 0 else n!/(k!*((n-k)/2)!^2* ((n-k)/2+1)) fi end: M := (k,x) -> add(A097610(k,j)*x^j,j=0..k):
    seq(print(seq(M(k,n),n=0..9)),k=0..6);
    # OGF (column)
    col := proc(n, len) local G; G := A247497_row(n); (-1)^(n+1)* add(G[k+1]/(x-1)^(k+1), k=0..n); seq(coeff(series(%, x, len+1),x,j), j=0..len) end: seq(print(col(n,8)), n=0..6); # Peter Luschny, Dec 14 2014
  • Mathematica
    T[0, k_] := If[EvenQ[k], CatalanNumber[k/2], 0];
    T[n_, k_] := n^k*Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4/n^2];
    Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
  • Sage
    def A247495(n,k):
        if n==0: return(k//2+1)*factorial(k)/factorial(k//2+1)^2 if is_even(k) else 0
        return n^k*hypergeometric([(1-k)/2,-k/2],[2],4/n^2).simplify()
    for n in (0..7): print([A247495(n,k) for k in range(11)])

Formula

T(n,k) = (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) for k>=2.
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-2*j)*binomial(k,2*j)*binomial(2*j,j)/(j+1).
T(n,k) = n^k*hypergeom([(1-k)/2,-k/2], [2], 4/n^2) for n>0.
T(n,n) = A247496(n).
O.g.f. for row n: (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2).
O.g.f. for row n: R(x)/x where R(x) is series reversion of x/(1+n*x+x^2).
E.g.f. for row n: exp(n*x)*hypergeom([],[2],x^2).
O.g.f. for column k: the k-th column consists of the values of the k-th Motzkin polynomial M_{k}(x) evaluated at x = 0,1,2,...; M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j = sum_{j=0..k} (-1)^j*binomial(k,j)*A001006(j)*(x+1)^(k-j).
O.g.f. for column k: sum_{j=0..k} (-1)^(k+1)*A247497(k,j)/(x-1)^(j+1). - Peter Luschny, Dec 14 2014
O.g.f. for row n: 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
T(n,k) is the coefficient of x^k in the expansion of 1/(k+1) * (1 + n*x + x^2)^(k+1). - Seiichi Manyama, May 07 2019

A121448 Triangle read by rows: T(n,k) is the number of binary trees with n edges and having k vertices of outdegree 1 (n>=0, k>=0). A binary tree is a rooted tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child.

Original entry on oeis.org

1, 0, 2, 1, 0, 4, 0, 6, 0, 8, 2, 0, 24, 0, 16, 0, 20, 0, 80, 0, 32, 5, 0, 120, 0, 240, 0, 64, 0, 70, 0, 560, 0, 672, 0, 128, 14, 0, 560, 0, 2240, 0, 1792, 0, 256, 0, 252, 0, 3360, 0, 8064, 0, 4608, 0, 512, 42, 0, 2520, 0, 16800, 0, 26880, 0, 11520, 0, 1024, 0, 924, 0, 18480, 0
Offset: 0

Views

Author

Emeric Deutsch, Jul 31 2006

Keywords

Comments

T(2n,0) = binomial(2n,n)/(n+1) (the Catalan numbers; A000108); T(2n+1,0)=0. T(n,n)=2^n (A000079). Sum(k*T(n,k),k=0..n)=2*binomial(2n,n-1)=2*A001791(n). After deleting the zeros, reflection of A091894.
From Tom Copeland, Feb 07 2016: (Start)
A shifted o.g.f. is OG(x,t) = [1 - 2tx - sqrt[(1-2tx)^2-4x^2]] / (2x) = x + 2t x^2 + (1+4t^2) x^3 + ... with compositional inverse OGinv(x,t) = x / (1 + 2tx + x^2), the shifted o.g.f. for A053117 (mod signs).
For x > 0 and choosing the positive square root, OG(x^2,t) = H(x,t) = x^2 + 2t x^4 + (1+4t^2) x^6 + ... has the compositional inverse Hinv(x,t) = sqrt[x / (1 + 2tx + x^2)] , which satisfies Hinv(H(x, t), t) = x, and which is the generating function for the Legendre polynomials (mod signs, cf. A008316) times sqrt(x).
In general, GB(x,t,b) = [x / (1 - 2tx + x^2)]^b is a generator for the Gegenbauer polynomials times x^b for positive roots with compositional inverse about the origin GBinv(x,t,b) = OG(x^(1/b),-t) for x>0. Cf. A097610.
(End)
From Tom Copeland, Feb 09 2016: (Start)
z1 = OG(x,t) is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,t),z2(x,t)) =(z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-2tx)/x] z + 1, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,t) = [1 - 2tx + sqrt[(1-2tx)^2-4x^2]] / (2x) = (1 - 2tx)/x - z1(x,t).
The two are zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2). (Added Feb 13 2016. See Landweber et al., p 14. Cf. A097610.)
(End)

Examples

			T(2,2)=4 because, denoting by L (R) an edge going from a vertex to a left (right) child, we have the paths: LL, LR, RL and RR.
Triangle starts:
  1;
  0,2;
  1,0,4;
  0,6,0,8;
  2,0,24,0,16;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n-k mod 2 = 0 then 2^k*binomial(n+1,k)*binomial(n+1-k,(n-k)/2)/(n+1) else 0 fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    nn=10;Drop[CoefficientList[Series[(1-2x y - ((-4x^2+(1-2x y)^2))^(1/2))/(2 x),{x,0,nn}],{x,y}],1]//Grid  (* Geoffrey Critzer, Feb 20 2013 *)

Formula

T(n,k) = 2^k*binomial(n+1,k)binomial(n+1-k,(n-k)/2)/(n+1) if n-k is even; otherwise, T(n,k) = 0. G.f. G=G(t,z) satisfies G=1+2tzG+z^2*G^2.
T(n,k) = 2^k*A097610(n,k). - Philippe Deléham, Aug 17 2006
From Tom Copeland, Feb 09 2016: (Start)
The following is from the formalism in A097610 with h1 = 2t, h2 = 1, and MT(n,h1,h2) = MT(n,2t,1) and with OG(x,t) defined above.
E.g.f.: M(x,t) = e^(2tx) AC(x) = exp[x MT(.,2t,1)] = exp[x P(.,t)], where AC(x) = I_1(2x)/x = Sum_{n>=0} x^(2n)/(n!(n+1)!) = exp(c.x) is the e.g.f. of A126120.
P(n,t) = MT(n,2t,1) = (c. + 2t)^n = Sum_{k=0..n} binomial(n,k) c(n-k) (2t)^k with c(k) = A126120(k). P(n,t+s) = (c. + 2t + 2s)^n = (P(.,t) + 2s)^n.
P(n,t) = t^n FC(n,c./t) = t^n (2 + c./t)^n, where FC(n,t) = (2 + t)^n are the face polynomials (vectors) of the hypercubes of A038207, i.e., the row polynomials of this entry can be obtained as the umbral composition of the reverse face polynomials with the aerated Catalan numbers of A000108.
The lowering and raising operators for the row polynomials P(n,t) of this entry are L = (1/2) d/dt = (1/2) D and R = 2t + dlog{AC(L)}/dL = 2t + Sum_{n>=0} b(n) L^(2n+1)/(2n+1)! = 2t + L - L^3/3! + 5 L^5/5! - ... with b(n) = (-1)^n A180874(n+1).
Let CP(n,t) = P(n+1,t) with CP(0,t) = 0. Then the infinitesimal generator for CP(n,t) is g(x) d/dx with g(x) = 1 /[dOGinv(x,t)/dx] = x^2 / [(OGinv(x,t))^2 (1 - x^2)] = (1 + 2t x + x^2)^2 / (1 - x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomial CP(n,t), i.e., exp[x g(u)d/du] u |_(u=0) = OG(x,t) = 1 /[1 - x P(.,t)]. Cf. A145271.
g(x) = 1 + 4t x + (3+4t) x^2 + 8t x^3 + 4(1+t^2) x^4 + 8t x^5 + 4(1+t^2) x^6 + 8t x^7 + ... has the repeating coefficients of the vector V = (1, 4t, 3+4t, 8t, 4(1+t^2), 8t, 4(1+t^2), 8t, ...). Form the lower triangular matrix U with all ones on the diagonal and below. Multiply the n-th diagonal of U by V(n), giving the matrix VU with VU(n,k) = V(n-k). Then (1,0,0,0,..) [VU * DM]^n/n! (0,1,0,0,..)^T = CP(n,t) = P(n-1,t) for n>0 with DM being the matrix A218272 representing differentiation of a power series.
(End)

A359364 Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 2, 1, 0, 10, 0, 10, 0, 1, 0, 15, 0, 30, 0, 5, 1, 0, 21, 0, 70, 0, 35, 0, 1, 0, 28, 0, 140, 0, 140, 0, 14, 1, 0, 36, 0, 252, 0, 420, 0, 126, 0, 1, 0, 45, 0, 420, 0, 1050, 0, 630, 0, 42, 1, 0, 55, 0, 660, 0, 2310, 0, 2310, 0, 462, 0
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Comments

The generalized Motzkin numbers M(n, k) are a refinement of the Motzkin numbers M(n) (A001006) in the sense that they are coefficients of polynomials M(n, x) = Sum_{n..k} M(n, k) * x^k that take the value M(n) at x = 1. The coefficients of x^n are the aerated Catalan numbers A126120.
Variants are the irregular triangle A055151 with zeros deleted, A097610 with reversed rows, A107131 and A080159.
In the literature the name 'Motzkin triangle' is also used for the triangle A026300, which is generated from the powers of the generating function of the Motzkin numbers.

Examples

			Triangle M(n, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 0,  1;
[3] 1, 0,  3, 0;
[4] 1, 0,  6, 0,   2;
[5] 1, 0, 10, 0,  10, 0;
[6] 1, 0, 15, 0,  30, 0,   5;
[7] 1, 0, 21, 0,  70, 0,  35, 0;
[8] 1, 0, 28, 0, 140, 0, 140, 0,  14;
[9] 1, 0, 36, 0, 252, 0, 420, 0, 126, 0;
		

Crossrefs

Cf. A001006 (Motzkin numbers), A026300 (Motzkin gf. triangle), A126120 (aerated Catalan), A000108 (Catalan).

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n, n)/(n + 1):
    M := (n, k) -> ifelse(irem(k, 2) = 1, 0, CatalanNumber(k/2)*binomial(n, k)):
    for n from 0 to 9 do seq(M(n, k), k = 0..n) od;
    # Alternative, as coefficients of polynomials:
    p := n -> hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2):
    seq(print(seq(coeff(simplify(p(n)), x, k), k = 0..n)), n = 0..9);
    # Using the exponential generating function:
    egf := exp(x)*BesselI(1, 2*x*t)/(x*t): ser:= series(egf, x, 11):
    seq(print(seq(coeff(simplify(n!*coeff(ser, x, n)), t, k), k = 0..n)), n = 0..9);
  • Python
    from functools import cache
    @cache
    def M(n: int, k: int) -> int:
        if k %  2: return 0
        if n <  3: return 1
        if n == k: return (2 * (n - 1) * M(n - 2, n - 2)) // (n // 2 + 1)
        return (M(n - 1, k) * n) // (n - k)
    for n in range(10): print([M(n, k) for k in range(n + 1)])

Formula

Let p(n, x) = hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2).
p(n, 1) = A001006(n); p(n, sqrt(2)) = A025235(n); p(n, 2) = A091147(n).
p(2, n) = A002522(n); p(3, n) = A056107(n).
p(n, n) = A359649(n); 2^n*p(n, 1/2) = A000108(n+1).
M(n, k) = [x^k] p(n, x).
M(n, k) = [t^k] (n! * [x^n] exp(x) * BesselI(1, 2*t*x) / (t*x)).
M(n, k) = [t^k][x^n] ((1 - x - sqrt((x-1)^2 - (2*t*x)^2)) / (2*(t*x)^2)).
M(n, n) = A126120(n).
M(n, n-1) = A138364(n), the number of Motzkin n-paths with exactly one flat step.
M(2*n, 2*n) = A000108(n), the number of peakless Motzkin paths having a total of n up and level steps.
M(4*n, 2*n) = A359647(n), the central terms without zeros.
M(2*n+2, 2*n) = A002457(n) = (-4)^n * binomial(-3/2, n).
Sum_{k=0..n} M(n - k, k) = A023426(n).
Sum_{k=0..n} k * M(n, k) = 2*A014531(n-1) = 2*GegenbauerC(n - 2, -n, -1/2).
Sum_{k=0..n} i^k*M(n, k) = A343773(n), (i the imaginary unit), is the excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).
Sum_{k=0..n} Sum_{j=0..k} M(n, j) = A189912(n).
Sum_{k=0..n} Sum_{j=0..k} M(n, n-j) = modified A025179(n).
For a recursion see the Python program.

A280580 Triangle read by rows: T(n,k) = binomial(2*n,2*k)*binomial(2*n-2*k,n-k)/(n+1-k) for 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 6, 1, 5, 30, 15, 1, 14, 140, 140, 28, 1, 42, 630, 1050, 420, 45, 1, 132, 2772, 6930, 4620, 990, 66, 1, 429, 12012, 42042, 42042, 15015, 2002, 91, 1, 1430, 51480, 240240, 336336, 180180, 40040, 3640, 120, 1, 4862, 218790, 1312740, 2450448, 1837836, 612612, 92820, 6120, 153, 1
Offset: 0

Views

Author

Werner Schulte, Jan 05 2017

Keywords

Examples

			Triangle begins:
n\k:     0      1       2       3       4      5     6    7  8  . . .
  0:     1
  1:     1      1
  2:     2      6       1
  3:     5     30      15       1
  4:    14    140     140      28       1
  5:    42    630    1050     420      45      1
  6:   132   2772    6930    4620     990     66     1
  7:   429  12012   42042   42042   15015   2002    91    1
  8:  1430  51480  240240  336336  180180  40040  3640  120  1
  etc.
T(3,2) = binomial(6,4) * binomial(2,1) / (3+1-2) = 15 * 2 / 2 = 15. - _Indranil Ghosh_, Feb 15 2017
		

Crossrefs

Row sums are A026945.
Triangle related to A000108, A001006, A001263, and A039599.

Formula

T(n,k) = A001263(n+1,k+1)*A000108(n)/A000108(k) for 0 <= k <= n.
T(n,k) = binomial(2*n,2*k)*A000108(n-k) for 0 <= k <= n.
T(n,k) = A039599(n,k)*binomial(n+1+k,2*k+1)/(n+1-k) for 0 <= k <= n.
Recurrences: T(n,0) = A000108(n) and (1) T(n,k) = T(n,k-1)*(n+1-k)*(n+2-k)/ (2*k*(2*k-1)) for 0 < k <= n, (2) T(n,k) = T(n-1,k-1)*n*(2*n-1)/(k*(2*k-1)).
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k)*x^(2*k) satisfy the recurrence equation p"(n,x) = 2*n*(2*n-1)*p(n-1,x) with initial value p(0,x) = 1 ( n > 0, p" is the second derivative of p ), and Sum_{n>=0} p(n,x)*t^(2*n)/((2*n)!) = cosh(x*t)*(Sum_{n>=0} A000108(n)*t^(2*n)/((2*n)!)).
Conjectures: (1) Sum_{k=0..n} (-1)^k*T(n,k)*A238390(k) = A000007(n);
(2) Antidiagonal sums equal A001003(n);
(3) Matrix inverse equals T(n,k)*A103365(n+1-k).
Sum_{k=0..n} (n+1-k)*T(n,k) = A002426(2*n) = A082758(n).
Sum_{k=0..n} T(n,k)*A000108(k) = A000108(n)*A000108(n+1) = A005568(n).
Matrix product: Sum_{i=0..n} T(n,i)*T(i,k) = T(n,k)*A000108(n+1-k) for 0<=k<=n.
T(n,k) = A097610(2*n,2*k) for 0 <= k <= n.
Sum_{k=0..n} (k+1)*T(n,k)*A000108(k) = binomial(2*n+1,n)*A000108(n).

A189913 Triangle read by rows: T(n,k) = binomial(n, k) * k! / (floor(k/2)! * floor((k+2)/2)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 1, 4, 6, 12, 2, 1, 5, 10, 30, 10, 10, 1, 6, 15, 60, 30, 60, 5, 1, 7, 21, 105, 70, 210, 35, 35, 1, 8, 28, 168, 140, 560, 140, 280, 14, 1, 9, 36, 252, 252, 1260, 420, 1260, 126, 126, 1, 10, 45, 360, 420, 2520, 1050, 4200, 630, 1260, 42
Offset: 0

Views

Author

Peter Luschny, May 24 2011

Keywords

Comments

The triangle may be regarded a generalization of the triangle A097610:
A097610(n,k) = binomial(n,k)*(2*k)$/(k+1);
T(n,k) = binomial(n,k)*(k)$/(floor(k/2)+1).
Here n$ denotes the swinging factorial A056040(n). As A097610 is a decomposition of the Motzkin numbers A001006, a combinatorial interpretation of T(n,k) in terms of lattice paths can be expected.
T(n,n) = A057977(n) which can be seen as extended Catalan numbers.

Examples

			[0]  1
[1]  1, 1
[2]  1, 2,  1
[3]  1, 3,  3,   3
[4]  1, 4,  6,  12,  2
[5]  1, 5, 10,  30, 10,  10
[6]  1, 6, 15,  60, 30,  60,  5
[7]  1, 7, 21, 105, 70, 210, 35, 35
		

Crossrefs

Row sums are A189912.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*Factorial(k)/(Factorial(Floor(k/2))*Factorial(Floor((k + 2)/2))): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jan 13 2018
  • Maple
    A189913 := (n,k) -> binomial(n,k)*(k!/iquo(k,2)!^2)/(iquo(k,2)+1):
    seq(print(seq(A189913(n,k),k=0..n)),n=0..7);
  • Mathematica
    T[n_, k_] := Binomial[n, k]*k!/((Floor[k/2])!*(Floor[(k + 2)/2])!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]// Flatten (* G. C. Greubel, Jan 13 2018 *)
  • PARI
    {T(n,k) = binomial(n,k)*k!/((floor(k/2))!*(floor((k+2)/2))!) };
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 13 2018
    

Formula

From R. J. Mathar, Jun 07 2011: (Start)
T(n,1) = n.
T(n,2) = A000217(n-1).
T(n,3) = A027480(n-2).
T(n,4) = A034827(n). (End)

A247497 Triangle read by rows, T(n,k) (n>=0, 0<=k<=n) coefficients of the partial fraction decomposition of rational functions generating the columns of A247495 (the Motzkin polynomials evaluated at nonnegative integers).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 10, 12, 6, 9, 33, 62, 60, 24, 21, 111, 300, 450, 360, 120, 51, 378, 1412, 3000, 3720, 2520, 720, 127, 1303, 6552, 18816, 32760, 34440, 20160, 5040, 323, 4539, 30186, 113820, 264264, 388080, 352800, 181440, 40320
Offset: 0

Views

Author

Peter Luschny, Dec 13 2014

Keywords

Examples

			Triangle starts:
[  1],
[  1,    1],
[  2,    3,    2],
[  4,   10,   12,     6],
[  9,   33,   62,    60,    24],
[ 21,  111,  300,   450,   360,   120],
[ 51,  378, 1412,  3000,  3720,  2520,   720],
[127, 1303, 6552, 18816, 32760, 34440, 20160, 5040].
.
[n=3] -> [4,10,12,6] -> 4/(x-1)+10/(x-1)^2+12/(x-1)^3+6/(x-1)^4 = 2*x*(-x+2*x^2+2)/(x-1)^4; generating function of A247495[n,3] = 0,4,14, 36,...
[n=4] -> [9,33,62,60,24] -> -9/(x-1)-33/(x-1)^2-62/(x-1)^3-60/(x-1)^4-24/(x-1)^5 = -(2-x-3*x^3+17*x^2+9*x^4)/(x-1)^5; generating function of A247495[n,4] = 2,9,42,137,...
		

Crossrefs

Programs

  • Maple
    A247497_row := proc(n) local A, M, p;
    A := (n,k) -> `if`(type(n-k, odd),0,n!/(k!*((n-k)/2)!^2*((n-k)/2+1))):
    M := (k,x) -> add(A(k,j)*x^j,j=0..k): # Motzkin polynomial
    p := expand(sum(x^k*M(n,k),k=0..infinity));
    [seq((-1)^(n+1)*coeff(convert(p,parfrac),(x-1)^(-j)),j=1..n+1)] end:
    seq(print(A247497_row(n)),n=0..7);

Formula

Let M_{n}(x) = sum_{k=0..n} A097610(n,k)*x^k denote the Motzkin polynomials. The T(n,k) are implicitly defined by:
sum_{k=0..n} (-1)^(n+1)*T(n,k)/(x-1)^(k+1) = sum_{k>=0} x^k*M_n(k).
T(n, 0) = A001006(n) (Motzkin numbers).
T(n, n) = A000142(n) = n!.
T(n, 1) = A058987(n+1) for n>=1.
T(n,n-1)= A001710(n+1) for n>=1.
Previous Showing 11-20 of 21 results. Next