cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A132263 Product{0<=k<=floor(log_11(n)), floor(n/11^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 275, 280, 285, 290, 295, 300, 305, 310
Offset: 1

Views

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-11 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(50)=floor(50/11^0)*floor(50/11^1)=50*4=200; a(63)=315 since 63=58(base-11) and so a(63)=58*5(base-11)=63*5=315.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

Recurrence: a(n)=n*a(floor(n/11)); a(n*11^m)=n^m*11^(m(m+1)/2)*a(n).
a(k*11^m)=k^(m+1)*11^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_11(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_11(n)))/p^((1+floor(log_11(n)))*floor(log_11(n))/2); equality holds for n=k*11^m, 0=0. b(n) can also be written n^(1+floor(log_11(n)))/11^A000217(floor(log_11(n))).
Also: a(n)<=3^((1-log_11(3))/2)*n^((1+log_11(n))/2)=1.346673852...^((1-log_11(3))/2)*11^A000217(log_11(n)), equality holds for n=3*11^m, m>=0.
a(n)>c*b(n), where c=0.4751041275076031053975644472... (see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_11(sqrt(2)))*n^((1+log_11(n))/2)=0.607848303...*11^00217(log_11(n)).
lim inf a(n)/b(n)=0.4751041275076031053975644472..., for n-->oo.
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=0.4751041275076031...*sqrt(2)/2^log_11(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(3)/3^log_11(sqrt(3))=1.346673852..., for n-->oo.
lim inf a(n)/a(n+1)=0.4751041275076031053975644472... for n-->oo (see constant A132265).

A132264 Product{0<=k<=floor(log_12(n)), floor(n/12^k)}, n>=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 300, 305, 310, 315
Offset: 1

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-12 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product d(m)d(m-1)d(m-2)...d(2)d(1)d(0)*d(m)d(m-1)d(m-2)...d(2)d(1)*d(m)d(m-1)d(m-2)...d(2)*...*d(m)d(m-1)d(m-2)*d(m)d(m-1)*d(m).

Examples

			a(50)=floor(50/12^0)*floor(50/12^1)=50*4=200.
a(65)=325 since 65=55(base-12) and so a(65)=55*5(base-12)=65*5=325.
		

Crossrefs

For the product of terms floor(n/p^k) for p=2 to p=11 see A098844(p=2), A132027(p=3)-A132033(p=9), A067080(p=10), A132263(p=11).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Formula

The following formulas are given for a general parameter p considering the product of terms floor(n/p^k) for 0<=k<=floor(log_p(n)), where p=12 for this sequence.
Recurrence: a(n)=n*a(floor(n/p)); a(n*p^m)=n^m*p^(m(m+1)/2)*a(n).
a(k*p^m)=k^(m+1)*p^(m(m+1)/2), for 0
Asymptotic behavior: a(n)=O(n^((1+log_p(n))/2)); this follows from the inequalities below.
a(n)<=b(n), where b(n)=n^(1+floor(log_p(n)))/p^((1+floor(log_p(n)))*floor(log_p(n))/2); equality holds for n=k*p^m, 0=0. b(n) can also be written n^(1+floor(log_p(n)))/p^A000217(floor(log_p(n))).
Also: a(n)<=q^((1-log_p(q))/2)*n^((1+log_p(n))/2)=q^((1-log_p(q))/2)*p^A000217(log_p(n)), equality holds for n=q*p^m, m>=0, where q=floor(sqrt(p)+1/2). Also, equality holds for n=(q+1)*p^m, provided p is a A002378-number (in this case we have p=q*(q+1) and so q^((1-log_p(q))/2)=(q+1)^((1-log_p(q+1))/2)).
a(n)>c*b(n), where c=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... (for p=12 see constant A132265).
Also: a(n)>c*(sqrt(2)/2^log_p(sqrt(2)))*n^((1+log_p(n))/2)=0.612870619...*p^A000217(log_p(n)), (p=12).
lim inf a(n)/b(n)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380198334286365820..., for n-->oo (for p=12 see constant A132265).
lim sup a(n)/b(n)=1, for n-->oo.
lim inf a(n)/n^((1+log_p(n))/2)=(sqrt(2)/2^log_p(sqrt(2)))*product{k>0, 1-1/(2*p^k)}=0.612870619..., for n-->oo, (p=12).
lim sup a(n)/n^((1+log_p(n))/2)=sqrt(q)/q^log_p(sqrt(q))=1.358593737..., for n-->oo, (p=12, q=round(sqrt(p))=3).
lim inf a(n)/a(n+1)=product{k>0, 1-1/(2*p^k)}=0.47735217025489380... for n-->oo (for p=12 see constant A132265).

A132269 a(n) = Product_{k>=0} (1 + floor(n/2^k)).

Original entry on oeis.org

1, 2, 6, 8, 30, 36, 56, 64, 270, 300, 396, 432, 728, 784, 960, 1024, 4590, 4860, 5700, 6000, 8316, 8712, 9936, 10368, 18200, 18928, 21168, 21952, 27840, 28800, 31744, 32768, 151470, 156060, 170100, 174960, 210900, 216600, 234000, 240000, 340956, 349272, 374616
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base 2 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).
From Gary W. Adamson, Aug 25 2016: (Start)
Given the following production matrix M =
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 3, 0, 0, 0, ...
0, 4, 0, 0, 0, ...
0, 0, 5, 0, 0, ...
0, 0, 6, 0, 0, ...
0, 0, 0, 7, 0, ...
...
the sequence is the left-shifted vector as lim_{n->infinity} M^n. (End)

Examples

			a(10) = (1 + floor(10/2^0))*(1 + floor(10/2^1))*(1 + floor(10/2^2))*(1 + floor(10/2^3)) = 11*6*3*2 = 396;
a(17) = 4860 since 17 = 10001_2 and so a(17) = (1+10001_2)*(1+1000_2)*(1+100_2)*(1+10_2)*(1+1) = 18*9*5*3*2 = 4860.
		

Crossrefs

For formulas regarding a general parameter p (i.e., terms 1+floor(n/p^k)) see A132271.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Magma
    [1] cat [n le 1 select 2 else (1+n)*Self(Floor(n/2)): n in [1..50]]; // Vincenzo Librandi, Aug 26 2016
  • Maple
    f:= proc(n) option remember; (1+n)*procname(floor(n/2)) end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Aug 26 2016
  • Mathematica
    Table[Product[1 + Floor[2 n/2^k], {k, 2 n}], {n, 0, 42}] (* or *)
    Table[Function[w, Times @@ Map[1 + FromDigits[PadRight[w, #], 2] &, Range@ Length@ w]]@ IntegerDigits[n, 2], {n, 0, 42}] (* Michael De Vlieger, Aug 26 2016 *)

Formula

Recurrence: a(n)=(1+n)*a(floor(n/2)); a(2n)=(1+2n)*a(n); a(n*2^m) = (Product_{k=1..m} (1 + n*2^k))*a(n).
a(2^m-1) = 2^(m*(m+1)/2), a(2^m) = 2^(m*(m+1)/2)*Product_{k=0..m} (1 + 1/2^k), m>=1.
a(n) = A132270(2n) = (1+n)*A132270(n).
Asymptotic behavior: a(n) = O(n^((1+log_2(n))/2)); this follows from the inequalities below.
a(n) <= A098844(n)*Product_{k=0..floor(log_2(n))} (1 + 1/2^k).
a(n) >= A098844(n)/Product_{k=1..floor(log_2(n))} (1 - 1/2^k).
a(n) < c*n^((1+log_2(n))/2) = c*2^A000217(log_2(n)), where c = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... (see constant A081845).
a(n) > n^((1+log_2(n))/2) = 2^A000217(log_2(n)),
lim sup a(n)/A098844(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n)/A098844(n) = 1/Product_{k>=1} (1 - 1/2^k) = 1/0.288788095086602421..., for n->oo (see constant A048651).
lim inf a(n)/n^((1+log_2(n))/2) = 1, for n->oo.
lim sup a(n)/n^((1+log_2(n))/2) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627..., for n->oo (see constant A081845).
lim inf a(n+1)/a(n) = Product_{k>=0} (1 + 1/2^k) = 4.7684620580627... for n->oo (see constant A081845).
G.f. g(x) satisfies g(x) = (1+2x)*g(x^2) + 2*x^2*(1+x)*g'(x^2). - Robert Israel, Aug 26 2016

A132327 a(n) = Product{k>=0} (1 + floor(n/3^k)).

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 21, 24, 27, 80, 88, 96, 130, 140, 150, 192, 204, 216, 399, 420, 441, 528, 552, 576, 675, 702, 729, 2240, 2320, 2400, 2728, 2816, 2904, 3264, 3360, 3456, 4810, 4940, 5070, 5600, 5740, 5880, 6450, 6600, 6750, 8832, 9024, 9216, 9996, 10200
Offset: 0

Author

Hieronymus Fischer, Aug 20 2007

Keywords

Comments

If n is written in base-3 as n=d(m)d(m-1)d(m-2)...d(2)d(1)d(0) (where d(k) is the digit at position k) then a(n) is also the product (1+d(m)d(m-1)d(m-2)...d(2)d(1)d(0))*(1+d(m)d(m-1)d(m-2)...d(2)d(1))*(1+d(m)d(m-1)d(m-2)...d(2))*...*(1+d(m)d(m-1)d(m-2))*(1+d(m)d(m-1))*(1+d(m)).

Examples

			a(12)=(1+floor(12/3^0))*(1+floor(12/3^1))*(1+floor(12/3^2))=13*5*2=130; a(20)=441 since 20=202(base-3) and so
a(20)=(1+202)*(1+20)*(1+2)(base-3)=21*7*3=441.
		

Crossrefs

Cf. A100220, A132027, A132038, A132264, A132269(for p=2), A132271(for p=10).
For formulas regarding a general parameter p (i.e. terms 1+floor(n/p^k)) see A132271.
For the product of terms floor(n/p^k) see A098844, A067080, A132027-A132033, A132263, A132264.

Programs

  • Mathematica
    Table[Product[1+Floor[n/3^k],{k,0,n}],{n,0,49}] (* James C. McMahon, Mar 07 2025 *)

Formula

Recurrence: a(n)=(1+n)*a(floor(n/3)); a(3n)=(1+3n)*a(n); a(n*3^m)=product{1<=k<=m, 1+n*3^k}*a(n).
a(k*3^m-j)=(k*3^m-j+1)*3^m*p^(m(m-1)/2), for 0=1, a(3^m)=3^(m(m+1)/2)*product{0<=k<=m, 1+1/3^k}, m>=1.
a(n)=A132328(3*n)=(1+n)*A132328(n).
Asymptotic behavior: a(n)=O(n^((1+log_3(n))/2)); this follows from the inequalities below.
a(n)<=A132027(n)*product{0<=k<=floor(log_3(n)), 1+1/3^k}.
a(n)>=A132027(n)/product{1<=k<=floor(log_3(n)), 1-1/3^k}.
a(n)A000217(log_3(n)), where c=product{k>=0, 1+1/p^k}=3.12986803713402307587769821345767... (see constant A132323).
a(n)>n^((1+log_3(n))/2)=3^A000217(log_3(n)).
lim sup a(n)/A132027(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n)/A132027(n)=1/product{k>0, 1-1/3^k}=1/0.560126077927948944969792243314140014..., for n-->oo (see constant A100220).
lim inf a(n)/n^((1+log_3(n))/2)=1, for n-->oo.
lim sup a(n)/n^((1+log_3(n))/2)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767..., for n-->oo (see constant A132323).
lim inf a(n+1)/a(n)=2*product{k>0, 1+1/3^k}=3.12986803713402307587769821345767... for n-->oo (see constant A132323).

A054896 a(n) = Sum_{k>0} floor(n/7^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 0

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Exponent of the highest power of 7 dividing n!.

Examples

			  a(10^0) = 0.
  a(10^1) = 1.
  a(10^3) = 16.
  a(10^3) = 164.
  a(10^4) = 1665.
  a(10^5) = 16662.
  a(10^6) = 166664.
  a(10^7) = 1666661.
  a(10^8) = 16666662.
  a(10^9) = 166666661
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

Formula

a(n) = floor(n/7) + floor(n/49) + floor(n/343) + floor(n/2401) + ...
a(n) = (n - A053828(n))/6.
From Hieronymus Fischer, Aug 14 2007: (Start)
a(n) = a(floor(n/7)) + floor(n/7).
a(7*n) = n + a(n).
a(n*7^m) = a(n) + n*(7^m-1)/6.
a(k*7^m) = k*(7^m-1)/6, for 0 <= k < 7, m >= 0.
Asymptotic behavior:
a(n) = n/6 + O(log(n)).
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/6; equality holds for powers of 7.
a(n) >= (n-6)/6 - floor(log_7(n)); equality holds for n=7^m-1, m>0. -
lim inf (n/6 - a(n)) = 1/6, for n-->oo.
lim sup (n/6 - log_7(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_7(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(7^k)/(1-x^(7^k)). (End)
Partial sums of A214411. - R. J. Mathar, Jul 08 2021
a(n) = A214411(A000142(n)). - Michel Marcus, Oct 07 2024

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A132035 Decimal expansion of Product_{k>0} (1-1/7^k).

Original entry on oeis.org

8, 3, 6, 7, 9, 5, 4, 0, 7, 0, 8, 9, 0, 3, 7, 8, 7, 1, 0, 2, 6, 7, 2, 9, 7, 9, 8, 1, 4, 6, 1, 3, 6, 2, 4, 1, 3, 5, 2, 4, 3, 6, 4, 3, 5, 8, 7, 6, 7, 1, 6, 5, 1, 9, 9, 6, 4, 1, 1, 5, 1, 0, 1, 7, 7, 0, 0, 9, 1, 6, 0, 1, 2, 6, 5, 4, 2, 7, 6, 0, 5, 8, 7, 8, 7, 5, 5, 5, 4, 2, 8, 4, 9, 0, 5, 1, 2, 0, 2, 1, 7, 5, 3
Offset: 0

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.8367954070890378710...
		

Programs

  • Mathematica
    digits = 103; NProduct[1-1/7^k, {k, 1, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/7], 10, 100][[1]] (* Amiram Eldar, May 09 2023 *)
  • PARI
    prodinf(k=1, 1 - 1/(7^k)) \\ Amiram Eldar, May 09 2023

Formula

Equals exp(-Sum_{n>0} sigma_1(n)/(n*7^n)) = exp(-Sum_{n>0} A000203(n)/(n*7^n)).
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(7)) * exp(log(7)/24 - Pi^2/(6*log(7))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(7))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027875(n). (End)

A054895 a(n) = Sum_{k>0} floor(n/6^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16
Offset: 0

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from the highest power of 6 dividing n! (cf. A054861). - Hieronymus Fischer, Aug 14 2007
Partial sums of A122841. - Hieronymus Fischer, Jun 06 2012

Examples

			  a(10^0) = 0.
  a(10^1) = 1.
  a(10^2) = 18.
  a(10^3) = 197.
  a(10^4) = 1997.
  a(10^5) = 19996.
  a(10^6) = 199995.
  a(10^7) = 1999995.
  a(10^8) = 19999994.
  a(10^9) = 199999993.
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

  • Haskell
    a054895 n = a054895_list !! n
    a054895_list = scanl (+) 0 a122841_list
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Magma
    function A054895(n)
      if n eq 0 then return n;
      else return A054895(Floor(n/6)) + Floor(n/6);
      end if; return A054895;
    end function;
    [A054895(n): n in [0..100]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    Table[t=0; p=6; While[s=Floor[n/p]; t=t+s; s>0, p *= 6]; t, {n,0,100}]
  • SageMath
    def A054895(n):
        if (n==0): return 0
        else: return A054895(n//6) + (n//6)
    [A054895(n) for n in range(104)] # G. C. Greubel, Feb 09 2023

Formula

a(n) = floor(n/6) + floor(n/36) + floor(n/216) + floor(n/1296) + ...
a(n) = (n - A053827(n))/5.
From Hieronymus Fischer, Aug 14 2007: (Start)
a(n) = a(floor(n/6)) + floor(n/6).
a(6*n) = n + a(n).
a(n*6^m) = n*(6^m-1)/5 + a(n).
a(k*6^m) = k*(6^m-1)/5, for 0 <= k < 6, m >= 0.
Asymptotic behavior:
a(n) = (n/5) + O(log(n)).
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/5; equality holds for powers of 6.
a(n) >= ((n-5)/5) - floor(log_6(n)); equality holds for n=6^m-1, m>0.
lim inf (n/5 - a(n)) = 1/5, for n-->oo.
lim sup (n/5 - log_6(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_6(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(6^k)/(1-x^(6^k)). (End)

Extensions

An incorrect formula was deleted by N. J. A. Sloane, Nov 18 2008
Examples added by Hieronymus Fischer, Jun 06 2012

A132020 Decimal expansion of Product_{k>=0} (1 - 1/(2*4^k)).

Original entry on oeis.org

4, 1, 9, 4, 2, 2, 4, 4, 1, 7, 9, 5, 1, 0, 7, 5, 9, 7, 7, 0, 9, 9, 5, 6, 1, 0, 7, 7, 0, 2, 9, 7, 4, 2, 5, 2, 2, 3, 3, 9, 5, 3, 2, 3, 4, 3, 9, 2, 6, 6, 6, 7, 4, 9, 0, 8, 0, 4, 4, 9, 9, 1, 6, 6, 3, 1, 7, 7, 2, 0, 5, 0, 8, 7, 2, 7, 0, 9, 1, 9, 3, 9, 1, 0, 0, 2, 3, 2, 4, 5, 4, 7, 4, 2, 3, 8, 1, 9, 5, 5, 0, 2, 8, 5, 8
Offset: 0

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Comments

This is the limiting probability that a large random symmetric binary matrix is nonsingular (cf. A086812, A048651). In other words, equals Lim_{n->oo} A086812(n)/A006125(n+1).- H. Tracy Hall, Sep 07 2024

Examples

			0.41942244179510759770995610770297425223395323439266674908044991663177...
		

Programs

  • Maple
    evalf(1+sum((-1)^n*2^(n*(n-1)/2)/product(2^k-1, k=1..n), n=1..infinity), 120); # Robert FERREOL, Feb 23 2020
  • Mathematica
    RealDigits[ Product[1 - 1/(2*4^i), {i, 0, 175}], 10, 111][[1]] (* Robert G. Wilson v, May 25 2011 *)
    RealDigits[QPochhammer[1/2, 1/4], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
  • PARI
    prodinf(k=0,1-1.>>(2*k+1)) \\ Charles R Greathouse IV, Nov 16 2012

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_4(n))} floor(n/4^k)*4^k/n.
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^((1/2)*(1+floor(log_4(n)))*floor(log_4(n))).
Equals lim inf_{n->oo} A132028(n)/n^(1+floor(log_4(n)))*4^A000217(floor(log_4(n))).
Equals (1/2)*exp(-Sum_{n>0} (4^(-n)*(Sum_{k|n} 1/(k*2^k)))).
Equals lim inf_{n->oo} A132028(n)/A132028(n+1).
Equals Product_{k>0} (1-1/(2^k+1)). - Robert G. Wilson v, May 25 2011
From Robert FERREOL, Feb 23 2020: (Start)
Equals Product_{k>0} (1 + 1/2^k)^(-1) = 2/A081845.
Equals 1 + Sum_{n>=1} (-1)^n*2^(n*(n-1)/2)/((2-1)*(2^2-1)*...*(2^n-1)). (End)
From Peter Bala, Jan 15 2021: (Start)
Constant C = Sum_{n >= 0} 2^n/Product_{k = 1..n} (1 - 4^k).
Faster converging series:
2*C = (1/2)*Sum_{n >= 0} 2^(-n)/Product_{k = 1..n} (1 - 4^k);
(2^4)*C = 7*Sum_{n >= 0} 2^(-3*n)/Product_{k = 1..n} (1 - 4^k);
(2^9)*C = 7*31*Sum_{n >= 0} 2^(-5*n)/Product_{k = 1..n} (1 - 4^k), and so on.
Slower converging series:
C = -Sum_{n >= 0} 2^(3*n)/Product_{k = 1..n} (1 - 4^k);
7*C = Sum_{n >= 0} 2^(5*n)/Product_{k = 1..n} (1 - 4^k);
7*31*C = -Sum_{n >= 0} 2^(7*n)/Product_{k = 1..n} (1 - 4^k), and so on. (End)
Equals Product_{n>=0} (1 - 1/A004171(n)). - Amiram Eldar, May 09 2023

Extensions

Name corrected by Charles R Greathouse IV, Nov 16 2012

A054893 a(n) = Sum_{j > 0} floor(n/4^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24
Offset: 0

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Different from highest power of 4 dividing n! (see A090616).

Examples

			  a(10^0) = 0.
  a(10^1) = 2.
  a(10^2) = 32.
  a(10^3) = 330.
  a(10^4) = 3331.
  a(10^5) = 33330.
  a(10^6) = 333330.
  a(10^7) = 3333329.
  a(10^8) = 33333328.
  a(10^9) = 333333326.
		

Crossrefs

Cf. A053737, A235127 (first differences).

Programs

  • Magma
    function A054893(n)
      if n eq 0 then return n;
      else return A054893(Floor(n/4)) + Floor(n/4);
      end if; return A054893;
    end function;
    [A054893(n): n in [0..103]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    Table[t=0; p=4; While[s=Floor[n/p]; t=t+s; s>0, p *= 4]; t, {n,0,100}]
    Table[Total[Floor/@(n/NestList[4#&,4,6])],{n,0,80}] (* Harvey P. Dale, Jun 12 2022 *)
  • PARI
    a(n) = (n - sumdigits(n,4))/3; \\ Kevin Ryde, Jan 08 2024
  • SageMath
    def A054893(n):
        if (n==0): return 0
        else: return A054893(n//4) + (n//4)
    [A054893(n) for n in range(104)] # G. C. Greubel, Feb 09 2023
    

Formula

a(n) = floor(n/4) + floor(n/16) + floor(n/64) + floor(n/256) + ...
a(n) = (n - A053737(n))/3.
From Hieronymus Fischer, Sep 15 2007: (Start)
a(n) = a(floor(n/4)) + floor(n/4).
a(4*n) = a(n) + n.
a(n*4^m) = a(n) + n*(4^m-1)/3.
a(k*4^m) = k*(4^m-1)/3, for 0 <= k < 4, m >= 0.
Asymptotic behavior:
a(n) = n/3 + O(log(n)),
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/3; equality holds true for powers of 4.
a(n) >= (n-3)/3 - floor(log_4(n)); equality holds true for n = 4^m - 1, m>0. lim inf (n/3 - a(n)) = 1/3, for n-->oo.
lim sup (n/3 - log_4(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_4(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(4^k)/(1-x^(4^k)). (End)
Partial sums of A235127. - R. J. Mathar, Jul 08 2021

Extensions

Edited by Hieronymus Fischer, Sep 15 2007
Examples added by Hieronymus Fischer, Jun 06 2012

A065039 If n in base 10 is d_1 d_2 ... d_k then a(n) = d_1 + d_1d_2 + d_1d_2d_3 + ... + d_1...d_k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70
Offset: 0

Author

Santi Spadaro, Nov 04 2001

Keywords

Comments

a(n) = (D(n) - sod(n))/9, for n >= 1, with sod(n) the sum of digits of n, and with D(n) any of the 10 numbers given in base 10 representation by d_(nod(n)-1) d_(nod(n)-2) ... d_0 b_0, where nod(n) is the number of digits of n = d_(nod(n)-1) d_(nod(n)-2) ... d_0 in base 10, and b_0 from {0, 1, ..., 9}. E.g., D(1234) stands for any number from {12340, 12341, ..., 12349}. This corresponds the well known (and easy to prove) rule that any number after subtraction of its sum of digits is divisible by 9. In this subtraction any of the last digit b_0 leads to the same result. Some mathematical tricks are based on this rule. See the Gardner reference. - Wolfdieter Lang, May 04 2010

Examples

			a(1234)=1370 because 1+12+123+1234=1370.
With repunits: a(1234) = 4*1 + 3*11 + 2*111 + 1*1111 = 1370. - _Wolfdieter Lang_, May 04 2010
		

References

  • M. Gardner, Mathematische Zaubereien, Dumont, 2004, p. 39. German translation of: Mathematics, Magic and Mystery, Dover, 1956. [From Wolfdieter Lang, May 04 2010]

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a065039 n = sum $ map read $ tail $ inits $ show n
    -- Reinhard Zumkeller, Mar 31 2011
  • Maple
    A065039 := proc(n) local d,m: d:=convert(n,base,10): m:=nops(d): return add(op(convert(d[(m-k+1)..m], base, 10, 10^m)),k=1..m): end: seq(A065039(n),n=0..64); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    a[n_] := Apply[Plus, Table[FromDigits[Take[IntegerDigits[n], k]], {k, 1, Length[IntegerDigits[n]]}]]
    Table[d = IntegerDigits[n]; rd = 0; While[ Length[d] > 0, rd = rd + FromDigits[d]; d = Drop[d, -1]]; rd, {n, 0, 75} ]
    f[n_] := Plus @@ NestList[ Quotient[ #, 10] &, n, Max[1, Floor@ Log[10, n]]]; Array[f, 70, 0] (* Robert G. Wilson v, Jun 29 2010 *)
    Array[Total[Table[FromDigits[Take[IntegerDigits[#],x]],{x, IntegerLength[ #]}]]&,100,0](* Harvey P. Dale, Jan 02 2016 *)
  • PARI
    { for (n=0, 1000, a=0; k=n; until (k==0, a+=k; k\=10); write("b065039.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 04 2009
    

Formula

a(n) = sum( k>=0, floor(n/10^ k)) = n+A054899(n). - Benoit Cloitre, Aug 03 2002
From Hieronymus Fischer, Aug 14 2007: (Start)
a(10*n)=10*n+a(n); a(n*10^m)=10*n*(10^m-1)/9+a(n).
a(k*10^m)=k*(10^(m+1)-1)/2, 0<=k<10, m>=0.
a(n)=10/9*n+O(log(n)), a(n+1)-a(n)=O(log(n)); this follows from the inequalities below.
a(n)<=(10*n-1)/9; equality holds for powers of 10.
a(n)>=(10*n-9)/9-floor(log_10(n)); equality holds for n=10^m-1, m>0.
lim inf (10*n/9-a(n))=1/9, for n-->oo.
lim sup (10*n/9-log_10(n)-a(n))=0, for n-->oo.
lim sup (a(n+1)-a(n)-log_10(n))=1, for n-->oo.
G.f.: sum{k>=0, x^(10^k)/(1-x^(10^k))}/(1-x).
(End)
a(n) = sum(d_(k)*RU(k+1),k=0..nod(n)-1), with the notation nod(n)and d_k given in a comment above, and RU(k)is the repunit (10^k-1)/9 (k times 1). - Wolfdieter Lang, May 04 2010
Previous Showing 21-30 of 45 results. Next