cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 54 results. Next

A118933 Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0

Views

Author

Paul D. Hanna, May 06 2006

Keywords

Comments

Row n contains 1+floor(n/4) terms. Row sums yield A118934. Given column vector V = A118935, then V is invariant under matrix product T*V = V, or, A118935(n) = Sum_{k=0..n} T(n,k)*A118935(k). Given C = Pascal's triangle and T = this triangle, then matrix product M = C^-1*T yields M(4n,n) = (4*n)!/(n!*4^n), 0 otherwise (cf. A100861 formula due to Paul Barry).

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,    6;
  1,   30;
  1,   90;
  1,  210;
  1,  420,   1260;
  1,  756,  11340;
  1, 1260,  56700;
  1, 1980, 207900;
  1, 2970, 623700, 1247400; ...
		

Crossrefs

Cf. A118934 (row sums), A118935 (invariant vector).
Variants: A100861, A118931.

Programs

  • Magma
    F:= Factorial;
    [n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
  • Mathematica
    T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
    Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
  • PARI
    T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
    
  • Sage
    f=factorial;
    flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
    

Formula

E.g.f.: A(x,y) = exp(x + y*x^4/4).

A368926 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different element from each edge.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 5, 3, 1, 1, 5, 12, 7, 3, 1, 1, 14, 29, 19, 8, 3, 1, 1, 35, 75, 47, 21, 8, 3, 1, 1, 97, 191, 127, 54, 22, 8, 3, 1, 1, 264, 504, 331, 149, 56, 22, 8, 3, 1, 1, 733, 1339, 895, 395, 156, 57, 22, 8, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2024

Keywords

Comments

Also the number of unlabeled loop-graphs covering n vertices with k loops and n-k non-loops such that each connected component has the same number of edges as vertices.

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  1  1
   2  5  3  1  1
   5 12  7  3  1  1
  14 29 19  8  3  1  1
  35 75 47 21  8  3  1  1
		

Crossrefs

The case of a unique choice is A106234, row sums A000081.
Column k = 0 is A137917, labeled version A137916.
Without the choice condition we have A368836.
The labeled version is A368924, row sums maybe A333331.
Row sums are A368984, complement A368835.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A322661 counts labeled covering half-loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]], {n,0,5},{k,0,n}]
  • PARI
    \\ TreeGf gives gf of A000081; G(n,1) is gf of A368983.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    G(n,y)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); 1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2 + (y-1)*g(1)}
    EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
    T(n)={[Vecrev(p) | p <- Vec(EulerMTS(G(n,y) - 1))]}
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2024

Extensions

a(36) onwards from Andrew Howroyd, Jan 14 2024

A368928 Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Examples

			Triangle begins:
     1
     0     1
     0     2     1
     1     9     9     1
    15    80    90    24     1
   252  1050  1200   450    50     1
  5005 18018 20475  9100  1575    90     1
The loop-graphs counted in row n = 3 (loops shown as singletons):
  {12}{13}{23}  {1}{12}{13}  {1}{2}{12}  {1}{2}{3}
                {1}{12}{23}  {1}{2}{13}
                {1}{13}{23}  {1}{2}{23}
                {2}{12}{13}  {1}{3}{12}
                {2}{12}{23}  {1}{3}{13}
                {2}{13}{23}  {1}{3}{23}
                {3}{12}{13}  {2}{3}{12}
                {3}{12}{23}  {2}{3}{13}
                {3}{13}{23}  {2}{3}{23}
		

Crossrefs

Row sums are A014068, unlabeled version A000666.
Column k = 0 is A116508, covering version A367863.
The covering case is A368597.
The unlabeled version is A368836.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}]
    T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ Andrew Howroyd, Jan 14 2024

Formula

T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k).

A369195 Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 0, 3, 10, 12, 6, 1, 0, 0, 0, 16, 79, 162, 179, 116, 45, 10, 1, 0, 0, 0, 0, 125, 847, 2565, 4615, 5540, 4720, 2948, 1360, 455, 105, 15, 1, 0, 0, 0, 0, 0, 1296, 11436, 47100, 121185, 220075, 301818, 325578, 282835, 200115, 115560, 54168, 20343, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 19 2024

Keywords

Comments

This sequence excludes the graph consisting of a single isolated vertex without a loop. - Andrew Howroyd, Feb 02 2024

Examples

			Triangle begins:
    1
    0    1
    0    1    2    1
    0    0    3   10   12    6    1
    0    0    0   16   79  162  179  116   45   10    1
Row n = 3 counts the following loop-graphs (loops shown as singletons):
  .  .  {12,13}  {1,12,13}   {1,2,12,13}   {1,2,3,12,13}   {1,2,3,12,13,23}
        {12,23}  {1,12,23}   {1,2,12,23}   {1,2,3,12,23}
        {13,23}  {1,13,23}   {1,2,13,23}   {1,2,3,13,23}
                 {2,12,13}   {1,3,12,13}   {1,2,12,13,23}
                 {2,12,23}   {1,3,12,23}   {1,3,12,13,23}
                 {2,13,23}   {1,3,13,23}   {2,3,12,13,23}
                 {3,12,13}   {1,12,13,23}
                 {3,12,23}   {2,3,12,13}
                 {3,13,23}   {2,3,12,23}
                 {12,13,23}  {2,3,13,23}
                             {2,12,13,23}
                             {3,12,13,23}
		

Crossrefs

Row lengths are A000124.
Diagonal T(n,n-1) is A000272, rooted A000169.
The case without loops is A062734.
Row sums are A062740.
Transpose is A322147.
Column sums are A322151.
Diagonal T(n,n) is A368951, connected case of A368597.
Connected case of A369199, without loops A054548.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts simple graphs, also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}], Length[Union@@#]==n&&Length[csm[#]]<=1&]], {n,0,5},{k,0,Binomial[n+1,2]}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(1 - x + log(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!, O(x*x^n))))) ]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024

Formula

E.g.f.: 1 - x + log(Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024

A359760 Triangle read by rows. The Kummer triangle, the coefficients of the Kummer polynomials. K(n, k) = binomial(n, k) * oddfactorial(k/2) if k is even, otherwise 0, where oddfactorial(z) := (2*z)!/(2^z*z!).

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 3, 1, 0, 10, 0, 15, 0, 1, 0, 15, 0, 45, 0, 15, 1, 0, 21, 0, 105, 0, 105, 0, 1, 0, 28, 0, 210, 0, 420, 0, 105, 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0, 1, 0, 45, 0, 630, 0, 3150, 0, 4725, 0, 945, 1, 0, 55, 0, 990, 0, 6930, 0, 17325, 0, 10395, 0
Offset: 0

Views

Author

Peter Luschny, Jan 13 2023

Keywords

Comments

The Kummer numbers K(n, k) are a refinement of the oddfactorial numbers (A001147) in the sense that they are the coefficients of polynomials K(n, x) = Sum_{n..k} K(n, k) * x^k that take the value oddfactorial(n) at x = 1. The coefficients of x^n are the aerated oddfactorial numbers A123023.
These numbers appear in many different versions (see the crossrefs). They are the coefficients of the Chebyshev-Hermite polynomials in signed form when ordered in decreasing powers. Our exposition is based on the seminal paper by Kummer, which preceded the work of Chebyshev and Hermite for more than 20 years. They are also referred to as Bessel numbers of the second kind (Mansour et al.) when the odd powers are omitted.

Examples

			Triangle K(n, k) starts:
 [0] 1;
 [1] 1, 0;
 [2] 1, 0,  1;
 [3] 1, 0,  3, 0;
 [4] 1, 0,  6, 0,   3;
 [5] 1, 0, 10, 0,  15, 0;
 [6] 1, 0, 15, 0,  45, 0,   15;
 [7] 1, 0, 21, 0, 105, 0,  105, 0;
 [8] 1, 0, 28, 0, 210, 0,  420, 0, 105;
 [9] 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0;
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002), pp. 85-86.

Crossrefs

Variants: Signed version: A073278. Other variants are the irregular triangle A100861 with zeros deleted, A066325 and A099174 with reversed rows, A111924, A144299, A104556.

Programs

  • Maple
    oddfactorial := proc(z) (2*z)! / (2^z*z!) end:
    K := (n, k) -> ifelse(irem(k, 2) = 1, 0, binomial(n, k) * oddfactorial(k/2)):
    seq(seq(K(n, k), k = 0..n), n = 0..11);
    # Alternative, as coefficients of polynomials:
    p := (n, x) -> 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)):
    seq(print(seq(coeff(simplify(p(n, x)), x, k), k = 0..n)), n = 0 ..9);
    # Using the exponential generating function:
    egf := exp(x + (t*x)^2 / 2): ser := series(egf, x, 12):
    seq(print(seq(coeff(n! * coeff(ser, x, n), t, k), k = 0..n)), n = 0..9);
  • Mathematica
    K[n_, k_] := K[n, k] = Which[OddQ[k], 0, k == 0, 1, n == k, K[n - 1, n - 2], True, K[n - 1, k] n/(n - k)];
    Table[K[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from functools import cache
    @cache
    def K(n: int, k: int) -> int:
        if k %  2: return 0
        if n <  3: return 1
        if n == k: return K(n - 1, n - 2)
        return (K(n - 1, k) * n) // (n - k)
    for n in range(10): print([K(n, k) for k in range(n + 1)])

Formula

Let p(n, x) = 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)).
p(n, 1) = A000085(n); p(n, sqrt(2)) = A047974(n); p(n, 2) = A115329(n);
p(2, n) = A002522(n) (n >= 1); p(3, n) = A056107(n) (n >= 1);
p(n, n) = A359739(n) (n >= 1); 2^n*p(n, 1/2) = A005425(n).
K(n, k) = [x^k] p(n, x).
K(n, k) = [t^k] (n! * [x^n] exp(x + (t*x)^2 / 2)).
K(n, n) = A123023(n).
K(n, n-1) = A123023(n + 1).
K(2*n, 2*n) = A001147(n).
K(4*n, 2*n) = A359761, the central terms without zeros.
K(2*n+2, 2*n) = A001879.
Sum_{k=0..n} (-1)^n * i^k * K(n, k) = A001464(n), ((the number of even involutions) - (the number of odd involutions) in the symmetric group S_n (Robert Israel)).
Sum_{k=0..n} Sum_{j=0..k} K(n, j) = A000085(n + 1).
For a recursion see the Python program.

A157018 Triangle T(n,k) read by rows: number of k-lists (ordered k-sets) of disjoint 2-subsets of an n-set, n>1, 0

Original entry on oeis.org

1, 3, 6, 6, 10, 30, 15, 90, 90, 21, 210, 630, 28, 420, 2520, 2520, 36, 756, 7560, 22680, 45, 1260, 18900, 113400, 113400, 55, 1980, 41580, 415800, 1247400, 66, 2970, 83160, 1247400, 7484400, 7484400, 78, 4290, 154440, 3243240, 32432400, 97297200
Offset: 2

Views

Author

Allan L. Edmonds and Vladeta Jovovic, Feb 21 2009

Keywords

Comments

T(n,k) is also the number of involutions (unary operators) on S_n, i.e., endomorphisms U with 2k non-invariant elements such that U^2 is the identity mapping. The extension to n=1 is a(1)=0. - Stanislav Sykora, Nov 03 2016

Examples

			For n = 4 we have 12 lists: 6 1-lists: [{1,2}], [{1,3}], [{1,4}], [{2,3}], [{2,4}], [{3,4}] and 6 2-lists: [{1,2},{3,4}], [{3,4},{1,2}], [{1,3},{2,4}], [{2,4},{1,3}], [{1,4},{2,3}] and [{2,3},{1,4}].
		

Crossrefs

Programs

  • Mathematica
    Table[n!/(2^k (n - 2 k)!), {n, 2, 13}, {k, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 04 2016 *)
  • PARI
    nmax=100;a=vector(floor(nmax^2/4));idx=0;
    for(n=2,nmax,for(k=1,n\2,a[idx++]=n!/(2^k*(n-2*k)!)));
    a \\ Stanislav Sykora, Nov 03 2016

Formula

E.g.f.: y*x^2*exp(x)/(2-y*x^2).
T(n,k) = Product_{m=1..floor(n/2)} binomial(n-2*m,2) = n!/(2^k*(n-2*k)!).

A344911 Concatenated Bessel-scaled Pascal triangles. Irregular triangle read by rows, T(n,k) with n >= 0 and 0 <= k <= (2*n*(n + 4) - 1 + (-1)^n)/8.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 3, 3, 1, 4, 6, 4, 1, 6, 12, 6, 3, 1, 5, 10, 10, 5, 1, 10, 30, 30, 10, 15, 15, 1, 6, 15, 20, 15, 6, 1, 15, 60, 90, 60, 15, 45, 90, 45, 15, 1, 7, 21, 35, 35, 21, 7, 1, 21, 105, 210, 210, 105, 21, 105, 315, 315, 105, 105, 105
Offset: 0

Views

Author

Peter Luschny, Jun 03 2021

Keywords

Comments

Let p(n) = Sum_{k=0..n/2} Sum_{j=0..n-2*k} (n!/(2^k*k!*j!*(n-2*k-j)!))*x^j*y^(n-2*k-j). Row n of the triangle is defined as the coefficient list of the polynomials p(n), where the monomials are in degree-lexicographic order.
One observes: The triangle of the coefficients appears as a series of concatenated subtriangles. The first one is Pascal's triangle A007318. Appending the rows of triangle A094305 on the right side starts in row 2. In row 4, the next triangle is appended, which is A344565. This scheme goes on indefinitely.
This can be formalized as follows: Let C(n) denote row n of the binomial triangle, set c.C(n) = Seq_{j=0..n} c*binomial(n, j), and let B(n, k) denote the Bessel numbers A100861(n, k). Then T(n) = Seq_{k=0..n/2} B(n, k).C(n-2*k). Since B(n, k) = binomial(n, 2*k)*(2*k - 1)!! it follows that: T(n) = Seq_{k=0..n/2} Seq_{j=0..n-2*k} binomial(n, 2*k)*binomial(n-2*k, j)*(2*k-1)!!. This expression equals the coefficient list of p(n) since the monomials are in degree-lexicographic order.
The polynomials are also the unsigned, probabilist's Hermite polynomials H_n(x+y)
which are discussed in A344678. The coefficients are listed there in a different order which do not reveal the structure described above.

Examples

			The triangle begins:
[0] [ 1 ]
[1] [ 1, 1 ]
[2] [ 1, 2,  1 ][ 1 ]
[3] [ 1, 3,  3,   1 ][ 3,   3 ]
[4] [ 1, 4,  6,   4,   1 ][ 6,   12,    6 ][ 3 ]
[5] [ 1, 5, 10,  10,   5,   1 ][ 10,   30,  30, 10 ][ 15, 15 ]
[6] [ 1, 6, 15,  20,  15,   6,    1 ][ 15,  60, 90,   60, 15 ][ 45, 90, 45][ 15 ]
.
With the notations in the comment row 7 concatenates:
B(7, 0).C(7) =   1.[1, 7, 21, 35, 35, 21, 7, 1] = [1, 7, 21, 35, 35, 21, 7, 1],
B(7, 1).C(5) =  21.[1, 5, 10, 10, 5, 1]         = [21, 105, 210, 210, 105, 21],
B(7, 2).C(3) = 105.[1, 3, 3, 1]                 = [105, 315, 315, 105],
B(7, 3).C(1) = 105.[1, 1]                       = [105, 105].
.
p_6(x,y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 +
15*x^4 + 60*x^3*y + 90*x^2*y^2 + 60*x*y^3 + 15*y^4 + 45*x^2 + 90*x*y + 45*y^2 + 15.
		

Crossrefs

Cf. A005425 (row sums), A100861 (scaling factors).

Programs

  • Maple
    P := n -> add(add(n!/(2^k*k!*j!*(n-2*k-j)!)*y^(n-2*k-j)*x^j, j=0..n-2*k), k=0..n/2):
    seq(seq(subs(x = 1, y = 1, m), m = [op(P(n))]), n = 0..7);
    # Alternatively, without polynomials:
    B := (n, k) -> binomial(n, 2*k)*doublefactorial(2*k-1):
    C := n -> seq(binomial(n, j), j=0..n):
    seq(seq(B(n, k)*C(n-2*k), k = 0..n/2), n = 0..7);
    # Based on the e.g.f. of the polynomials:
    T := proc(numofrows) local gf, ser, n, m;
    gf := exp(t^2/2)*exp(t*(x + y)); ser := series(gf, t, numofrows+1);
    for n from 0 to numofrows do [op(sort(n!*expand(coeff(ser, t, n))))];
    print(seq(subs(x=1, y=1, m), m = %)) od end: T(7);
  • Mathematica
    P[n_] := Sum[ Sum[n! / (2^k k! j! (n - 2k - j)!) y^(n - 2k - j) x^j, {j, 0, n-2k}], {k, 0, n/2}];
    DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
    Table[DegLexList[P[n]], {n, 0, 7}] // Flatten

Formula

The bivariate e.g.f. exp(t^2/2)*exp(t*(x + y)) = Sum_{n>=0} H_n(x + y)*t^n/n!, where H_n(x) are the unsigned, modified Hermite polynomials A099174, is given by Tom Copeland in A344678.

A344912 Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0

Views

Author

Peter Luschny, Jun 04 2021

Keywords

Comments

Consider a sequence of Pascal tetrahedrons (depending on a parameter m >= 1), where the slices of the pyramid are scaled. They are given by the e.g.f.s exp(t^m / m) * exp(t*(x + y)), which provide a sequence of bivariate polynomials in x and y, whose monomials are to be ordered in degree-lexicographic order. For m = 1 one gets A109649 (resp. A046816), for m = 2 one gets A344911 (resp. A344678), and for m = 3 the current triangle. The row sums have an unexpected interpretation in A336614 (see the link).

Examples

			Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2,  1;
[3] 1, 3,  3,  1,  2;
[4] 1, 4,  6,  4,  1,  8,  8;
[5] 1, 5, 10, 10,  5,  1, 20, 40,  20;
[6] 1, 6, 15, 20, 15,  6,  1, 40, 120, 120,  40,  40;
[7] 1, 7, 21, 35, 35, 21,  7,  1,  70, 280, 420, 280, 70, 280, 280.
.
p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
		

Crossrefs

m=1: A109649, (A046816) [row sums A000244], scaling A007318 [row sums A000079].
m=2: A344911, (A344678) [row sums A005425], scaling A100861 [row sums A000085].
m=3: this triangle [row sums A336614], scaling A118931 [row sums A001470].

Programs

  • Maple
    B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
    T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
  • Mathematica
    gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
    P[n_] := Expand[n! Coefficient[ser, t, n]];
    DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
    Table[DegLexList[P[n]], {n, 0, 7}] // Flatten

A368726 Number of non-isomorphic connected multiset partitions of weight n into singletons or pairs.

Original entry on oeis.org

1, 1, 3, 3, 8, 10, 26, 38, 93, 161, 381, 732, 1721, 3566, 8369, 18316, 43280, 98401, 234959, 549628, 1327726, 3175670, 7763500, 18905703, 46762513, 115613599, 289185492, 724438500, 1831398264, 4641907993, 11853385002, 30365353560
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2024

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 10 multiset partitions:
  {{1}}  {{1,1}}    {{1},{1,1}}    {{1,1},{1,1}}      {{1},{1,1},{1,1}}
         {{1,2}}    {{2},{1,2}}    {{1,2},{1,2}}      {{1},{1,2},{2,2}}
         {{1},{1}}  {{1},{1},{1}}  {{1,2},{2,2}}      {{2},{1,2},{1,2}}
                                   {{1,3},{2,3}}      {{2},{1,2},{2,2}}
                                   {{1},{1},{1,1}}    {{2},{1,3},{2,3}}
                                   {{1},{2},{1,2}}    {{3},{1,3},{2,3}}
                                   {{2},{2},{1,2}}    {{1},{1},{1},{1,1}}
                                   {{1},{1},{1},{1}}  {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

For edges of any size we have A007718.
This is the connected case of A320663.
The case of singletons and strict pairs is A368727, Euler transform A339888.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, into pairs A007717.
A062740 counts connected loop-graphs, unlabeled A054921.
A320732 counts factorizations into primes or semiprimes, strict A339839.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n], Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]

Formula

Inverse Euler transform of A320663.

A368727 Number of non-isomorphic connected multiset partitions of weight n into singletons or strict pairs.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 15, 21, 49, 82, 184, 341, 766, 1530, 3428, 7249, 16394, 36009, 82492, 186485, 433096, 1001495, 2358182, 5554644, 13255532, 31718030, 76656602, 185982207, 454889643, 1117496012, 2764222322, 6868902152, 17172601190
Offset: 0

Views

Author

Gus Wiseman, Jan 06 2024

Keywords

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 multiset partitions:
  {1}  {12}    {2}{12}    {12}{12}      {2}{12}{12}      {12}{12}{12}
       {1}{1}  {1}{1}{1}  {13}{23}      {2}{13}{23}      {12}{13}{23}
                          {1}{2}{12}    {3}{13}{23}      {13}{23}{23}
                          {2}{2}{12}    {1}{2}{2}{12}    {13}{24}{34}
                          {1}{1}{1}{1}  {2}{2}{2}{12}    {14}{24}{34}
                                        {1}{1}{1}{1}{1}  {1}{2}{12}{12}
                                                         {1}{2}{13}{23}
                                                         {2}{2}{12}{12}
                                                         {2}{2}{13}{23}
                                                         {2}{3}{13}{23}
                                                         {3}{3}{13}{23}
                                                         {1}{1}{2}{2}{12}
                                                         {1}{2}{2}{2}{12}
                                                         {2}{2}{2}{2}{12}
                                                         {1}{1}{1}{1}{1}{1}
		

Crossrefs

For edges of any size we have A056156, with loops A007718.
This is the connected case of A339888.
Allowing loops {x,x} gives A368726, Euler transform A320663.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, into pairs A007717.
A062740 counts connected loop-graphs, unlabeled A054921.
A320732 counts factorizations into primes or semiprimes, strict A339839.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]

Formula

Inverse Euler transform of A339888.
Previous Showing 41-50 of 54 results. Next