A118933
Triangle, read by rows, where T(n,k) = n!/(k!*(n-4*k)!*4^k) for n>=4*k>=0.
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 1, 30, 1, 90, 1, 210, 1, 420, 1260, 1, 756, 11340, 1, 1260, 56700, 1, 1980, 207900, 1, 2970, 623700, 1247400, 1, 4290, 1621620, 16216200, 1, 6006, 3783780, 113513400, 1, 8190, 8108100, 567567000, 1, 10920, 16216200, 2270268000, 3405402000
Offset: 0
Triangle begins:
1;
1;
1;
1;
1, 6;
1, 30;
1, 90;
1, 210;
1, 420, 1260;
1, 756, 11340;
1, 1260, 56700;
1, 1980, 207900;
1, 2970, 623700, 1247400; ...
-
F:= Factorial;
[n lt 4*k select 0 else F(n)/(4^k*F(k)*F(n-4*k)): k in [0..Floor(n/4)], n in [0..20]]; // G. C. Greubel, Mar 07 2021
-
T[n_, k_]:= If[n<4*k, 0, n!/(4^k*k!*(n-4*k)!)];
Table[T[n, k], {n,0,20}, {k,0,n/4}]//Flatten (* G. C. Greubel, Mar 07 2021 *)
-
T(n,k)=if(n<4*k,0,n!/(k!*(n-4*k)!*4^k))
-
f=factorial;
flatten([[0 if n<4*k else f(n)/(4^k*f(k)*f(n-4*k)) for k in [0..n/4]] for n in [0..20]]) # G. C. Greubel, Mar 07 2021
A368926
Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on n vertices with k loops and n-k non-loops such that it is possible to choose a different element from each edge.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 1, 2, 1, 1, 2, 5, 3, 1, 1, 5, 12, 7, 3, 1, 1, 14, 29, 19, 8, 3, 1, 1, 35, 75, 47, 21, 8, 3, 1, 1, 97, 191, 127, 54, 22, 8, 3, 1, 1, 264, 504, 331, 149, 56, 22, 8, 3, 1, 1, 733, 1339, 895, 395, 156, 57, 22, 8, 3, 1, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
1 2 1 1
2 5 3 1 1
5 12 7 3 1 1
14 29 19 8 3 1 1
35 75 47 21 8 3 1 1
Without the choice condition we have
A368836.
Cf.
A057500,
A116508,
A133686,
A367863,
A367869,
A368596,
A368597,
A368598,
A368601,
A368836,
A368927.
-
Table[Length[Union[sysnorm /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]], {n,0,5},{k,0,n}]
-
\\ TreeGf gives gf of A000081; G(n,1) is gf of A368983.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
G(n,y)={my(t=TreeGf(n)); my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x*x^n)); 1 + (sum(d=1, n, eulerphi(d)/d*log(1/(1-g(d)))) + ((1+g(1))^2/(1-g(2))-1)/2 - (g(1)^2 + g(2)))/2 + (y-1)*g(1)}
EulerMTS(p)={my(n=serprec(p,x)-1,vars=variables(p)); exp(sum(i=1, n, substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i))}
T(n)={[Vecrev(p) | p <- Vec(EulerMTS(G(n,y) - 1))]}
{ my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2024
A368928
Triangle read by rows where T(n,k) is the number of labeled loop-graphs with n vertices and n edges, k of which are loops.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 1, 9, 9, 1, 15, 80, 90, 24, 1, 252, 1050, 1200, 450, 50, 1, 5005, 18018, 20475, 9100, 1575, 90, 1, 116280, 379848, 427329, 209475, 46550, 4410, 147, 1, 3108105, 9472320, 10548720, 5503680, 1433250, 183456, 10584, 224, 1
Offset: 0
Triangle begins:
1
0 1
0 2 1
1 9 9 1
15 80 90 24 1
252 1050 1200 450 50 1
5005 18018 20475 9100 1575 90 1
The loop-graphs counted in row n = 3 (loops shown as singletons):
{12}{13}{23} {1}{12}{13} {1}{2}{12} {1}{2}{3}
{1}{12}{23} {1}{2}{13}
{1}{13}{23} {1}{2}{23}
{2}{12}{13} {1}{3}{12}
{2}{12}{23} {1}{3}{13}
{2}{13}{23} {1}{3}{23}
{3}{12}{13} {2}{3}{12}
{3}{12}{23} {2}{3}{13}
{3}{13}{23} {2}{3}{23}
-
Table[Length[Select[Subsets[Subsets[Range[n], {1,2}],{n}],Count[#,{_}]==k&]],{n,0,5},{k,0,n}]
T[n_,k_]:= Binomial[n,k]*Binomial[Binomial[n,2],n-k]; Table[T[n,k],{n,0,8},{k,0,n}]// Flatten (* Stefano Spezia, Jan 14 2024 *)
-
T(n,k) = binomial(n,k)*binomial(binomial(n,2),n-k) \\ Andrew Howroyd, Jan 14 2024
A369195
Irregular triangle read by rows where T(n,k) is the number of labeled connected loop-graphs covering n vertices with k edges.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 1, 0, 0, 3, 10, 12, 6, 1, 0, 0, 0, 16, 79, 162, 179, 116, 45, 10, 1, 0, 0, 0, 0, 125, 847, 2565, 4615, 5540, 4720, 2948, 1360, 455, 105, 15, 1, 0, 0, 0, 0, 0, 1296, 11436, 47100, 121185, 220075, 301818, 325578, 282835, 200115, 115560, 54168, 20343, 5985, 1330, 210, 21, 1
Offset: 0
Triangle begins:
1
0 1
0 1 2 1
0 0 3 10 12 6 1
0 0 0 16 79 162 179 116 45 10 1
Row n = 3 counts the following loop-graphs (loops shown as singletons):
. . {12,13} {1,12,13} {1,2,12,13} {1,2,3,12,13} {1,2,3,12,13,23}
{12,23} {1,12,23} {1,2,12,23} {1,2,3,12,23}
{13,23} {1,13,23} {1,2,13,23} {1,2,3,13,23}
{2,12,13} {1,3,12,13} {1,2,12,13,23}
{2,12,23} {1,3,12,23} {1,3,12,13,23}
{2,13,23} {1,3,13,23} {2,3,12,13,23}
{3,12,13} {1,12,13,23}
{3,12,23} {2,3,12,13}
{3,13,23} {2,3,12,23}
{12,13,23} {2,3,13,23}
{2,12,13,23}
{3,12,13,23}
A000666 counts unlabeled loop-graphs.
A006125 counts simple graphs, also loop-graphs if shifted left.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}], Length[Union@@#]==n&&Length[csm[#]]<=1&]], {n,0,5},{k,0,Binomial[n+1,2]}]
-
T(n)={[Vecrev(p) | p<-Vec(serlaplace(1 - x + log(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!, O(x*x^n))))) ]}
{ my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024
A359760
Triangle read by rows. The Kummer triangle, the coefficients of the Kummer polynomials. K(n, k) = binomial(n, k) * oddfactorial(k/2) if k is even, otherwise 0, where oddfactorial(z) := (2*z)!/(2^z*z!).
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 6, 0, 3, 1, 0, 10, 0, 15, 0, 1, 0, 15, 0, 45, 0, 15, 1, 0, 21, 0, 105, 0, 105, 0, 1, 0, 28, 0, 210, 0, 420, 0, 105, 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0, 1, 0, 45, 0, 630, 0, 3150, 0, 4725, 0, 945, 1, 0, 55, 0, 990, 0, 6930, 0, 17325, 0, 10395, 0
Offset: 0
Triangle K(n, k) starts:
[0] 1;
[1] 1, 0;
[2] 1, 0, 1;
[3] 1, 0, 3, 0;
[4] 1, 0, 6, 0, 3;
[5] 1, 0, 10, 0, 15, 0;
[6] 1, 0, 15, 0, 45, 0, 15;
[7] 1, 0, 21, 0, 105, 0, 105, 0;
[8] 1, 0, 28, 0, 210, 0, 420, 0, 105;
[9] 1, 0, 36, 0, 378, 0, 1260, 0, 945, 0;
- John Riordan, Introduction to Combinatorial Analysis, Dover (2002), pp. 85-86.
- Pierre Humbert, Monographie des polynômes de Kummer, Nouvelles annales de mathématiques, journal des candidats aux écoles polytechnique et normale, Serie 5, Volume 1 (1922), pp. 81-92.
- E. E. Kummer, Über die hypergeometrische Reihe, Journal für die reine und angewandte Mathematik 15 (1836): 39-83.
- T. Mansour, M. Schork and M. Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
- Ladislav Truksa, Hypergeometric orthogonal systems of polynomials III, Aktuárské vědy, Vol. 2 (1931), No. 4, 177-203, (see p.200).
-
oddfactorial := proc(z) (2*z)! / (2^z*z!) end:
K := (n, k) -> ifelse(irem(k, 2) = 1, 0, binomial(n, k) * oddfactorial(k/2)):
seq(seq(K(n, k), k = 0..n), n = 0..11);
# Alternative, as coefficients of polynomials:
p := (n, x) -> 2^(n/2)*(-1/x^2)^(-n/2)*KummerU(-n/2, 1/2, -1/(2*x^2)):
seq(print(seq(coeff(simplify(p(n, x)), x, k), k = 0..n)), n = 0 ..9);
# Using the exponential generating function:
egf := exp(x + (t*x)^2 / 2): ser := series(egf, x, 12):
seq(print(seq(coeff(n! * coeff(ser, x, n), t, k), k = 0..n)), n = 0..9);
-
K[n_, k_] := K[n, k] = Which[OddQ[k], 0, k == 0, 1, n == k, K[n - 1, n - 2], True, K[n - 1, k] n/(n - k)];
Table[K[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
-
from functools import cache
@cache
def K(n: int, k: int) -> int:
if k % 2: return 0
if n < 3: return 1
if n == k: return K(n - 1, n - 2)
return (K(n - 1, k) * n) // (n - k)
for n in range(10): print([K(n, k) for k in range(n + 1)])
A157018
Triangle T(n,k) read by rows: number of k-lists (ordered k-sets) of disjoint 2-subsets of an n-set, n>1, 0
Original entry on oeis.org
1, 3, 6, 6, 10, 30, 15, 90, 90, 21, 210, 630, 28, 420, 2520, 2520, 36, 756, 7560, 22680, 45, 1260, 18900, 113400, 113400, 55, 1980, 41580, 415800, 1247400, 66, 2970, 83160, 1247400, 7484400, 7484400, 78, 4290, 154440, 3243240, 32432400, 97297200
Offset: 2
For n = 4 we have 12 lists: 6 1-lists: [{1,2}], [{1,3}], [{1,4}], [{2,3}], [{2,4}], [{3,4}] and 6 2-lists: [{1,2},{3,4}], [{3,4},{1,2}], [{1,3},{2,4}], [{2,4},{1,3}], [{1,4},{2,3}] and [{2,3},{1,4}].
-
Table[n!/(2^k (n - 2 k)!), {n, 2, 13}, {k, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 04 2016 *)
-
nmax=100;a=vector(floor(nmax^2/4));idx=0;
for(n=2,nmax,for(k=1,n\2,a[idx++]=n!/(2^k*(n-2*k)!)));
a \\ Stanislav Sykora, Nov 03 2016
A344911
Concatenated Bessel-scaled Pascal triangles. Irregular triangle read by rows, T(n,k) with n >= 0 and 0 <= k <= (2*n*(n + 4) - 1 + (-1)^n)/8.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 3, 3, 1, 4, 6, 4, 1, 6, 12, 6, 3, 1, 5, 10, 10, 5, 1, 10, 30, 30, 10, 15, 15, 1, 6, 15, 20, 15, 6, 1, 15, 60, 90, 60, 15, 45, 90, 45, 15, 1, 7, 21, 35, 35, 21, 7, 1, 21, 105, 210, 210, 105, 21, 105, 315, 315, 105, 105, 105
Offset: 0
The triangle begins:
[0] [ 1 ]
[1] [ 1, 1 ]
[2] [ 1, 2, 1 ][ 1 ]
[3] [ 1, 3, 3, 1 ][ 3, 3 ]
[4] [ 1, 4, 6, 4, 1 ][ 6, 12, 6 ][ 3 ]
[5] [ 1, 5, 10, 10, 5, 1 ][ 10, 30, 30, 10 ][ 15, 15 ]
[6] [ 1, 6, 15, 20, 15, 6, 1 ][ 15, 60, 90, 60, 15 ][ 45, 90, 45][ 15 ]
.
With the notations in the comment row 7 concatenates:
B(7, 0).C(7) = 1.[1, 7, 21, 35, 35, 21, 7, 1] = [1, 7, 21, 35, 35, 21, 7, 1],
B(7, 1).C(5) = 21.[1, 5, 10, 10, 5, 1] = [21, 105, 210, 210, 105, 21],
B(7, 2).C(3) = 105.[1, 3, 3, 1] = [105, 315, 315, 105],
B(7, 3).C(1) = 105.[1, 1] = [105, 105].
.
p_6(x,y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 +
15*x^4 + 60*x^3*y + 90*x^2*y^2 + 60*x*y^3 + 15*y^4 + 45*x^2 + 90*x*y + 45*y^2 + 15.
-
P := n -> add(add(n!/(2^k*k!*j!*(n-2*k-j)!)*y^(n-2*k-j)*x^j, j=0..n-2*k), k=0..n/2):
seq(seq(subs(x = 1, y = 1, m), m = [op(P(n))]), n = 0..7);
# Alternatively, without polynomials:
B := (n, k) -> binomial(n, 2*k)*doublefactorial(2*k-1):
C := n -> seq(binomial(n, j), j=0..n):
seq(seq(B(n, k)*C(n-2*k), k = 0..n/2), n = 0..7);
# Based on the e.g.f. of the polynomials:
T := proc(numofrows) local gf, ser, n, m;
gf := exp(t^2/2)*exp(t*(x + y)); ser := series(gf, t, numofrows+1);
for n from 0 to numofrows do [op(sort(n!*expand(coeff(ser, t, n))))];
print(seq(subs(x=1, y=1, m), m = %)) od end: T(7);
-
P[n_] := Sum[ Sum[n! / (2^k k! j! (n - 2k - j)!) y^(n - 2k - j) x^j, {j, 0, n-2k}], {k, 0, n/2}];
DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
A344912
Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 3, 1, 2;
[4] 1, 4, 6, 4, 1, 8, 8;
[5] 1, 5, 10, 10, 5, 1, 20, 40, 20;
[6] 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40;
[7] 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280.
.
p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
-
B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
-
gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
P[n_] := Expand[n! Coefficient[ser, t, n]];
DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
A368726
Number of non-isomorphic connected multiset partitions of weight n into singletons or pairs.
Original entry on oeis.org
1, 1, 3, 3, 8, 10, 26, 38, 93, 161, 381, 732, 1721, 3566, 8369, 18316, 43280, 98401, 234959, 549628, 1327726, 3175670, 7763500, 18905703, 46762513, 115613599, 289185492, 724438500, 1831398264, 4641907993, 11853385002, 30365353560
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 10 multiset partitions:
{{1}} {{1,1}} {{1},{1,1}} {{1,1},{1,1}} {{1},{1,1},{1,1}}
{{1,2}} {{2},{1,2}} {{1,2},{1,2}} {{1},{1,2},{2,2}}
{{1},{1}} {{1},{1},{1}} {{1,2},{2,2}} {{2},{1,2},{1,2}}
{{1,3},{2,3}} {{2},{1,2},{2,2}}
{{1},{1},{1,1}} {{2},{1,3},{2,3}}
{{1},{2},{1,2}} {{3},{1,3},{2,3}}
{{2},{2},{1,2}} {{1},{1},{1},{1,1}}
{{1},{1},{1},{1}} {{1},{2},{2},{1,2}}
{{2},{2},{2},{1,2}}
{{1},{1},{1},{1},{1}}
For edges of any size we have
A007718.
This is the connected case of
A320663.
The case of singletons and strict pairs is
A368727, Euler transform
A339888.
A007716 counts non-isomorphic multiset partitions, into pairs
A007717.
A320732 counts factorizations into primes or semiprimes, strict
A339839.
Cf.
A001515,
A000666,
A122848,
A283877,
A302545,
A320462,
A321405,
A368186,
A368598,
A368599,
A368731.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n], Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]
A368727
Number of non-isomorphic connected multiset partitions of weight n into singletons or strict pairs.
Original entry on oeis.org
1, 1, 2, 2, 5, 6, 15, 21, 49, 82, 184, 341, 766, 1530, 3428, 7249, 16394, 36009, 82492, 186485, 433096, 1001495, 2358182, 5554644, 13255532, 31718030, 76656602, 185982207, 454889643, 1117496012, 2764222322, 6868902152, 17172601190
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 multiset partitions:
{1} {12} {2}{12} {12}{12} {2}{12}{12} {12}{12}{12}
{1}{1} {1}{1}{1} {13}{23} {2}{13}{23} {12}{13}{23}
{1}{2}{12} {3}{13}{23} {13}{23}{23}
{2}{2}{12} {1}{2}{2}{12} {13}{24}{34}
{1}{1}{1}{1} {2}{2}{2}{12} {14}{24}{34}
{1}{1}{1}{1}{1} {1}{2}{12}{12}
{1}{2}{13}{23}
{2}{2}{12}{12}
{2}{2}{13}{23}
{2}{3}{13}{23}
{3}{3}{13}{23}
{1}{1}{2}{2}{12}
{1}{2}{2}{2}{12}
{2}{2}{2}{2}{12}
{1}{1}{1}{1}{1}{1}
This is the connected case of
A339888.
A007716 counts non-isomorphic multiset partitions, into pairs
A007717.
A320732 counts factorizations into primes or semiprimes, strict
A339839.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List /@ c[[1]]],Union@@s[[c[[1]]]]]]]]];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n],And@@UnsameQ@@@#&&Max@@Length/@#<=2&&Length[csm[#]]<=1&]]],{n,0,8}]
Comments