cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A094555 Number of walks of length n between two vertices on the same triangular face of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

0, 1, 1, 6, 11, 46, 111, 386, 1051, 3366, 9671, 29866, 87891, 267086, 794431, 2396946, 7163531, 21545206, 64526391, 193797626, 580955971, 1743741726, 5229477551, 15691927906, 47068793211, 141220360646, 423633119911, 1270955283786
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

Average of binomial and inverse binomial transforms of the Jacobsthal numbers A001045. - Paul Barry, Jan 04 2005

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {0, 1, 1, 6}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 0, (3^n - (-2)^n + 1)/6) \\ Andrew Howroyd, Jun 15 2021

Formula

G.f.: x*(1 - x - x^2)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 3^n/6 - (-2)^n/6 + 1/6 - 0^n/6.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*A001045(n-2k). - Paul Barry, Jan 04 2005
E.g.f.: exp(-2*x)*(exp(5*x) + exp(3*x) - exp(2*x) - 1)/6. - Stefano Spezia, Dec 26 2021

A094554 Number of closed walks of length n at a base vertex of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

1, 0, 3, 2, 19, 30, 143, 322, 1179, 3110, 10183, 28842, 89939, 262990, 802623, 2380562, 7196299, 21479670, 64657463, 193535482, 581480259, 1742693150, 5231574703, 15687733602, 47077181819, 141203583430, 423666674343
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

For n > 0, 6*a(n) is the number of 3-colorings of the prism of size 2 X n (i.e., C_2 X C_n).More generally, the number of k-colorings of the prism of size 2 X n is given by (k^2 - 3*k + 3)^n + (k - 1) * ((3 - k)^n + (1 - k)^n) + k^2 - 3*k + 1 (chromatic polynomial). - Sela Fried, Oct 07 2023

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {1, 0, 3, 2}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 1, (1 + 3^n + 2*(-2)^n)/6) \\ Andrew Howroyd, Jun 14 2021

Formula

G.f.: (1 - 2*x - 2*x^2 + 2*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 1/6 + 3^n/6 + (-2)^n/3 for n > 0.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-2*x)*(1 + exp(2*x))*(2 + exp(3*x))/6. - Stefano Spezia, Sep 26 2023

A054880 a(n) = 3*(9^n - 1)/4.

Original entry on oeis.org

0, 6, 60, 546, 4920, 44286, 398580, 3587226, 32285040, 290565366, 2615088300, 23535794706, 211822152360, 1906399371246, 17157594341220, 154418349070986, 1389765141638880, 12507886274749926, 112570976472749340, 1013138788254744066, 9118249094292696600, 82064241848634269406, 738578176637708424660
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

Number of walks of length 2n+1 along the edges of a (3 dimensional) cube between two opposite vertices.
Urn A initially contains 3 labeled balls while urn B is empty. A ball is randomly selected and switched from one urn to the other. a(n)/3^(2n+1) is the probability that urn A is empty after 2n+1 switches. - Geoffrey Critzer, May 23 2013

Crossrefs

Programs

  • GAP
    List([0..30], n-> 3*(9^n -1)/4); # G. C. Greubel, Jul 14 2019
  • Magma
    [3*(9^n -1)/4: n in [0..30]]; // G. C. Greubel, Jul 14 2019
    
  • Mathematica
    Table[(2 n + 1)! Coefficient[Series[Sinh[x]^3, {x, 0, 2 n + 1}],
    x^(2 n + 1)], {n, 0, 30}]  (* Geoffrey Critzer, May 23 2013 *)
    LinearRecurrence[{10,-9},{0,6},30] (* Harvey P. Dale, Sep 17 2024 *)
  • PARI
    vector(30, n, n--; 3*(9^n -1)/4) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [3*(9^n -1)/4 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

G.f.: (3/4)/(1 - 9*x) - (3/4)/(1 - x).
a(n) = 6*A002452(n).
sin(x)^3 = Sum_{k>=0} (-1)^(k+1)*a(k)*x^(2k+1)/(2k+1)!. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A015518(2n+1) - 1 = (A046717(2n+1) - 1)/2. - M. F. Hasler, Mar 20 2008
a(n) = 9*a(n-1) + 6 with n > 0, a(0) = 0. - Vincenzo Librandi, Aug 07 2010
a(n) = A066443(n) - 1. - Georg Fischer, Nov 25 2018
E.g.f.: 3*(exp(9*x) - exp(x))/4. - G. C. Greubel, Jul 14 2019
a(n) = 10*a(n-1) - 9*a(n-2) with a(0) = 0 and a(1) = 6. - Miquel A. Fiol, Mar 09 2024

A125857 Numbers whose base-9 representation is 22222222.......2.

Original entry on oeis.org

0, 2, 20, 182, 1640, 14762, 132860, 1195742, 10761680, 96855122, 871696100, 7845264902, 70607384120, 635466457082, 5719198113740, 51472783023662, 463255047212960, 4169295424916642, 37523658824249780, 337712929418248022
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Comments

If f(1) := 1/x and f(n+1) = (f(n) + 2/f(n))/3, then f(n) = 3^(1-n) * (1/x + a(n)*x + O(x^3)). - Michael Somos, Jul 28 2020

Examples

			G.f. = 2*x^2 + 20*x^3 + 182*x^4 + 1640*x^5 + 14762*x^6 + 132860*x^7 + ... - _Michael Somos_, Jul 28 2020
		

Crossrefs

Cf. A002452.

Programs

  • Maple
    seq((9^n-1)*2/8, n=0..19);
  • Mathematica
    FromDigits[#, 9]&/@Table[PadRight[{2}, n, 2], {n, 0, 20}] (* Harvey P. Dale, Feb 02 2011 *)
    Table[(9^(n - 1) - 1)*2/8, {n, 20}] (* Wesley Ivan Hurt, Mar 29 2014 *)
  • PARI
    Vec(2*x^2/((x-1)*(9*x-1)) + O(x^100)) \\ Colin Barker, Sep 30 2014
    
  • PARI
    {a(n) = (9^(n-1) - 1)/4}; /* Michael Somos, Jul 02 2017 */

Formula

a(n) = (9^(n-1) - 1)*2/8.
a(n) = 9*a(n-1) + 2 (with a(1)=0). - Vincenzo Librandi, Sep 30 2010
a(n) = 2 * A002452(n). - Vladimir Pletser, Mar 29 2014
From Colin Barker, Sep 30 2014: (Start)
a(n) = 10*a(n-1) - 9*a(n-2).
G.f.: 2*x^2 / ((x-1)*(9*x-1)). (End)
a(n) = -a(2-n) * 9^(n-1) for all n in Z. - Michael Somos, Jul 02 2017
a(n) = A191681(n-1)/2. - Klaus Purath, Jul 03 2020

A094556 Number of walks of length n between opposite vertices on a triangular prism.

Original entry on oeis.org

0, 1, 0, 7, 8, 51, 100, 407, 1008, 3451, 9500, 30207, 87208, 268451, 791700, 2402407, 7152608, 21567051, 64482700, 193885007, 580781208, 1744091251, 5228778500, 15693326007, 47065997008, 141225953051, 423621935100, 1270977653407
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,5,-6},{0,1,0,7},30] (* or *) CoefficientList[ Series[ x (1-2x+2x^2)/((1-x)(1+2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    a(n) = if(n==0, 0, (3^n - 2*(-2)^n - 1)/6) \\ Andrew Howroyd, Jun 15 2021

Formula

G.f.: x*(1 - 2*x + 2*x^2)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 3^n/6 - (-2)^n/3 - 1/6 + 0^n/3.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-x)*(2+exp(3*x))*sinh(x)/3. - Stefano Spezia, Sep 26 2023

A270369 Expansion of g.f. (1-7*x)/(1-9*x).

Original entry on oeis.org

1, 2, 18, 162, 1458, 13122, 118098, 1062882, 9565938, 86093442, 774840978, 6973568802, 62762119218, 564859072962, 5083731656658, 45753584909922, 411782264189298, 3706040377703682, 33354363399333138, 300189270593998242, 2701703435345984178, 24315330918113857602, 218837978263024718418
Offset: 0

Views

Author

Colin Barker, Mar 18 2016

Keywords

Crossrefs

Cf. A001019 (powers of 9), A054879 (partial sums), A132025.
Cf. similar sequences with g.f. (1-k*x)/(1-9*x) and k=0..8: A001019 (k=0; k=8 gives two initial 1's ), A055275 (k=1), A270472 (k=2), A092810 (k=3), A067403 (k=4), A270473 (k=5), A102518 (k=6), this sequence (k=7).

Programs

  • Mathematica
    CoefficientList[Series[(1-7x)/(1-9x),{x,0,20}],x] (* or *) Join[ {1}, NestList[9#&,2,20]] (* Harvey P. Dale, Oct 15 2017 *)
  • PARI
    Vec((1-7*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-7*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 2*9^(n-1) for n>0.
From Amiram Eldar, May 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 25/16.
Sum_{n>=0} (-1)^n/a(n) = 11/20.
Product_{n>=1} (1 - 1/a(n)) = A132025. (End)
E.g.f.: (2*exp(9*x) + 7)/9. - Elmo R. Oliveira, Mar 25 2025

A270473 Expansion of g.f. (1-5*x)/(1-9*x).

Original entry on oeis.org

1, 4, 36, 324, 2916, 26244, 236196, 2125764, 19131876, 172186884, 1549681956, 13947137604, 125524238436, 1129718145924, 10167463313316, 91507169819844, 823564528378596, 7412080755407364, 66708726798666276, 600378541187996484, 5403406870691968356, 48630661836227715204
Offset: 0

Views

Author

Colin Barker, Mar 17 2016

Keywords

Comments

Also squares that can be expressed as the sum of two powers of three (3^x + 3^y), except a(0). - Karl-Heinz Hofmann, Sep 03 2022

Crossrefs

Cf. A001019 (powers of 9), A083884 (partial sums).
Cf. A067403: (1-4*x)/(1-9*x); A102518: (1-6*x)/(1-9*x).

Programs

  • Mathematica
    Join[{1},NestList[9#&,4,20]] (* Harvey P. Dale, Oct 23 2022 *)
  • PARI
    Vec((1-5*x)/(1-9*x) + O(x^30))

Formula

G.f.: (1-5*x)/(1-9*x).
a(n) = 9*a(n-1) for n>1.
a(n) = 4*9^(n-1) for n>0.
E.g.f.: (4*exp(9*x) + 5)/9. - Stefano Spezia, Jul 09 2024

A199573 Number of round trips of length n from any of the four vertices of the cycle graph C_4.

Original entry on oeis.org

1, 0, 2, 0, 8, 0, 32, 0, 128, 0, 512, 0, 2048, 0, 8192, 0, 32768, 0, 131072, 0, 524288, 0, 2097152, 0, 8388608, 0, 33554432, 0, 134217728, 0, 536870912, 0, 2147483648, 0, 8589934592, 0, 34359738368, 0, 137438953472, 0
Offset: 0

Views

Author

Wolfdieter Lang, Nov 08 2011

Keywords

Comments

See the array w(N,L) and the triangle a(K,N) given in A199571.
Essentially the same as A103424.
This is A081294 and A000004 interleaved. - Omar E. Pol, Nov 09 2011

Examples

			a(4)=8 from the eight round trips of length 4 (starting from, say, vertex no. 1): 12121, 14141, 12141, 14121, 12321, 14341, 12341 and 14321.
		

Crossrefs

Cf. A078008 (N=3), A054877 (N=5), A199571.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x^2)/(1 - (2 x)^2), {x, 0, 40}], x] (* or *) Riffle[Join[{1},NestList[4#&,2,20]],0] (* or *) LinearRecurrence[ {0,4},{1,0,2},80] (* Harvey P. Dale, Dec 04 2015 *)

Formula

a(n) = 2^(n-2)*(1+(-1)^n), n>=2, a(0)=1.
O.g.f.: (1-2*x^2)/(1-(2*x)^2).
E.g.f.: 1+(1 + 2*x^2/(U(0) - 2*x^2 + 1))*x^2 where U(k)= 4*k+5 + 2*x^2/(1 + (2*k+3)*(k+2)/U(k+1)) ; (continued fraction, 3rd kind, 2-step). - Sergei N. Gladkovskii, Oct 28 2012
Previous Showing 11-18 of 18 results.