cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A127628 G.f. 1/(1-6*x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 6, 42, 300, 2154, 15492, 111492, 802584, 5778090, 41600532, 299517996, 2156509416, 15526797252, 111792690600, 804906480840, 5795323452720, 41726317225770, 300429441596340, 2163091823919900, 15574260559056840, 112134673904493420, 807369644235408120
Offset: 0

Views

Author

Paul Barry, Jan 20 2007

Keywords

Comments

Image of 6^n under the Catalan transform g(x)->g(xc(x)). The Hankel transform of this sequence and of the aerated version with g.f. 1/(1-6*x^2*c(x^2)) is 6^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(72 + 144*n)*a(n) + (-82 - 56*n)*a(n + 1) + (5*n + 10)*a(n + 2), a(0) = 1, a(1) = 6},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Aug 28 2020
  • Mathematica
    RecurrenceTable[{(-56*n - 82)*a[n + 1] + (5*n +  10)*a[n + 2] + (144*n + 72)*a[n] == 0, a[0] == 1, a[1] == 6}, a, {n, 0, 50}] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
  • PARI
    my(x='x+O('x^25)); Vec(1/(1-6*x*(1-sqrt(1-4*x))/(2*x))) \\ Michel Marcus, Sep 15 2022

Formula

a(n) = 1 if n=0, Sum_{k=1..n} C(2*n-k-1,n-k)*k*6^k/n otherwise;
a(n) = Sum_{k=0..n} C(2*n,n-k)*(2*k+1)*5^k/(n+k+1).
a(n) = Sum_{k=0..n} A106566(n,k)*6^k. - Philippe Deléham, Feb 04 2007
a(n) = Sum_{k=0..n} A039599(n,k)*5^k. - Philippe Deléham, Sep 08 2007
a(n) = (36*a(n-1) - 6*A000108(n-1))/5 for n >= 1, a(0) = 1. - Philippe Deléham, Nov 27 2007
Conjecture: 5*n*a(n) + 2*(15-28*n)*a(n-1) + 72*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
G.f.: (2+3*sqrt(1-4*x))/(5-36*x). Mathar's conjecture verified using the differential equation (144*x^2-56*x+5)*y'+(72*x-26)*y = 4 satisfied by the g.f. - Robert Israel, Aug 28 2020

A110510 Riordan array (1, x*c(2x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 8, 4, 1, 0, 40, 20, 6, 1, 0, 224, 112, 36, 8, 1, 0, 1344, 672, 224, 56, 10, 1, 0, 8448, 4224, 1440, 384, 80, 12, 1, 0, 54912, 27456, 9504, 2640, 600, 108, 14, 1, 0, 366080, 183040, 64064, 18304, 4400, 880, 140, 16, 1, 0, 2489344, 1244672, 439296
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums are C(2;n), A064062. Inverse is A110509. Diagonal sums are A108308. [Corrected by Philippe Deléham, Nov 09 2007]
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, 2, 2, 2, 2, 2, 2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014

Examples

			Rows begin
  1;
  0,   1;
  0,   2,   1;
  0,   8,   4,   1;
  0,  40,  20,   6,   1;
  0, 224, 112,  36,   8,   1;
  ...
Production matrix begins:
  0,  1;
  0,  2,  1;
  0,  4,  2,  1;
  0,  8,  4,  2,  1;
  0, 16,  8,  4,  2,  1;
  0, 32, 16,  8,  4,  2,  1;
  0, 64, 32, 16,  8,  4,  2,  1;
  ... - _Philippe Deléham_, Sep 23 2014
		

Programs

  • Mathematica
    T[n_, k_] := (k/n)*Binomial[2*n - k - 1, n - k]*2^(n - k); Join[{1}, Table[T[n, k], {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Aug 29 2017 *)
  • PARI
    concat([1], for(n=1,25, for(k=0,n, print1((k/n)*binomial(2*n-k-1, n-k)*2^(n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017

Formula

Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*2^(n-k), n, k > 0.
T(n,k) = A106566(n,k)*2^(n-k). - Philippe Deléham, Nov 08 2007
T(n,k) = 2*T(n,k+1) + T(n-1,k-1) with T(n,n) = 1 and T(n,0) = 0 for n >= 1. - Peter Bala, Feb 02 2020

A110518 Riordan array (1, x*c(3x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 18, 6, 1, 0, 135, 45, 9, 1, 0, 1134, 378, 81, 12, 1, 0, 10206, 3402, 756, 126, 15, 1, 0, 96228, 32076, 7290, 1296, 180, 18, 1, 0, 938223, 312741, 72171, 13365, 2025, 243, 21, 1, 0, 9382230, 3127410, 729729, 138996, 22275, 2970, 315, 24, 1, 0
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums are C(3;n), A064063. Inverse is A110517. Diagonal sums are A110525.

Examples

			Rows begin
  1;
  0,    1;
  0,    3,    1;
  0,   18,    6,    1;
  0,  135,   45,    9,    1;
  0, 1134,  378,   81,   12,    1;
  ...
Production matrix begins:
  0,   1;
  0,   3,   1;
  0,   9,   3,   1;
  0,  27,   9,   3,   1;
  0,  81,  27,   9,   3,   1;
  0, 243,  81,  27,   9,   3,   1;
  ... - _Philippe Deléham_, Sep 23 2014
		

Programs

  • Mathematica
    T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := (k/n)*3^(n - k)*Binomial[2*n - k - 1, n - k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 29 2017 *)
  • PARI
    concat([1], for(n=1,10, for(k=0,n, print1((k/n)*3^(n-k)*binomial(2*n-k-1,n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017

Formula

Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*3^(n-k), n > 0, k > 0.
T(n,k) = A106566(n,k)*3^(n-k). - Philippe Deléham, Nov 08 2007
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 3, 3, 3, 3, 3, 3, 3, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014

A132364 Expansion of 1/(1-x^2*c(x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 1, 3, 7, 20, 59, 184, 593, 1964, 6642, 22845, 79667, 281037, 1001092, 3595865, 13009673, 47366251, 173415176, 638044203, 2357941142, 8748646386, 32576869203, 121701491701, 456012458965, 1713339737086
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2007

Keywords

Comments

Diagonal sums of A106566.

Crossrefs

Programs

  • Mathematica
    a[0] := 1; a[n_] := Sum[(k/(n - k))*Binomial[2*n - 3*k - 1, n - 2*k], {k, 0, Floor[n/2]}]; Table[a[n], {n,0,25}] (* G. C. Greubel, Oct 19 2016 *)
  • PARI
    c(x) = (1 - sqrt(1 - 4*x)) / (2*x); \\ A000108
    my(x='x+O('x^30)); Vec(1/(1-x^2*c(x))) \\ Michel Marcus, Nov 13 2022

Formula

a(0)=1, a(n) = Sum_{k=0..floor(n/2)} (k/(n-k))*C(2*n-3*k-1,n-2*k), n>0.
G.f.: (2-x-x*sqrt(1-4*x))/(2-2*x+2*x^3). - Philippe Deléham, Feb 24 2013
Conjecture: +(-n+1)*a(n) +(5*n-11)*a(n-1) +2*(-2*n+5)*a(n-2) +(-n+1)*a(n-3) +2*(2*n-5)*a(n-4)=0. - R. J. Mathar, Aug 28 2015
a(n) ~ 2^(2*n + 2) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2022

Extensions

Typo in a(n) term corrected Johannes W. Meijer, Sep 13 2010

A158826 Third iteration of x*C(x) where C(x) is the Catalan function (A000108).

Original entry on oeis.org

1, 3, 12, 54, 260, 1310, 6824, 36478, 199094, 1105478, 6227712, 35520498, 204773400, 1191572004, 6990859416, 41313818217, 245735825082, 1470125583756, 8840948601024, 53417237877396, 324123222435804, 1974317194619712
Offset: 1

Views

Author

Paul D. Hanna, Mar 28 2009

Keywords

Comments

Series reversion of x - 3*x^2 + 6*x^3 - 9*x^4 + 10*x^5 - 8*x^6 + 4*x^7 - x^8. - Benedict W. J. Irwin, Oct 19 2016
Column 1 of A106566^3 (see Barry, Section 3). - Peter Bala, Apr 11 2017

Crossrefs

Cf. A121988 (2nd), A158825, A158827 (4th), A158828, A158829.

Programs

  • Mathematica
    max = 22; c[x_] := Sum[ CatalanNumber[n]*x^n, {n, 0, max}]; f[x_] := x*c[x]; CoefficientList[ Series[ f@f@f@x, {x, 0, max}], x] // Rest (* Jean-François Alcover, Jan 24 2013 *)
    Rest@CoefficientList[InverseSeries[x-3x^2+6x^3-9x^4+10x^5-8x^6+4x^7-x^8+O[x]^30], x] (* Benedict W. J. Irwin, Oct 19 2016 *)
  • Maxima
    a(n):=sum(binomial(2*k-2,k-1)*sum(binomial(-k+2*i-1,i-1)*binomial(2*n-i-1,n-1),i,k,n),k,1,n)/n; /* Vladimir Kruchinin, Jan 24 2013 */
    
  • PARI
    a(n)=local(F=serreverse(x-x^2+O(x^(n+1))),G=x); for(i=1,3,G=subst(F,x,G)); polcoeff(G,n)
    
  • Python
    from sympy import binomial as C
    def a(n):
        return sum(C(2*k - 2, k - 1) * sum(C(-k + 2*i - 1, i - 1) * C(2*n - i - 1, n - 1) for i in range(k, n + 1)) for k in range(1, n + 1)) / n
    [a(n) for n in range(1, 51)] # Indranil Ghosh, Apr 12 2017

Formula

a(n) = (1/n)*Sum_{k=1..n} [ binomial(2*k-2,k-1)*Sum_{i=k..n}( binomial(-k+2*i-1,i-1)*binomial(2*n-i-1,n-1) ) ]. - Vladimir Kruchinin, Jan 24 2013
G.f.: (1 - sqrt(-1 + 2*sqrt(-1 + 2*sqrt(1 - 4*x))))/2. - Benedict W. J. Irwin, Oct 19 2016
a(n) ~ 2^(8*n - 3) / (sqrt(5*Pi) * n^(3/2) * 39^(n - 1/2)). - Vaclav Kotesovec, Jul 20 2019
Conjecture D-finite with recurrence 1053*n*(n-1)*(n-2)*(n-3)*a(n) -36*(n-1)*(n-2)*(n-3)*(634*n-1367)*a(n-1) +24*(n-2)*(n-3)*(7966*n^2-43500*n+61181)*a(n-2) -8*(n-3)*(96128*n^3-957424*n^2+3221878*n-3665189)*a(n-3) +16*(91904*n^4-1446528*n^3+8575792*n^2-22703688*n+22652013)*a(n-4) -256*(8*n-35)*(8*n-41)*(8*n-39)*(8*n-37)*a(n-5)=0. - R. J. Mathar, Aug 30 2021

A307496 Expansion of Product_{k>=1} (1 + ((1 - sqrt(1 - 4*x))/2)^k).

Original entry on oeis.org

1, 1, 2, 6, 18, 57, 187, 629, 2156, 7502, 26427, 94053, 337653, 1221260, 4445892, 16277089, 59893052, 221370725, 821499759, 3059620076, 11432831745, 42848889316, 161032785057, 606710026659, 2291156662259, 8670805904186, 32879697168622, 124910667052026, 475357627716839, 1811931609379926
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 10 2019

Keywords

Comments

Catalan transform of A000009 (number of partitions into distinct parts).
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting A000009 in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
1
1 1
1 2 2
2 4 6 6
2 6 12 18 18
3 9 21 39 57 57
...
Alternatively, the sequence can be obtained by multiplying A000009 by the array A106566.
(End)

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[(1 + ((1 - Sqrt[1 - 4 x])/2)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Product[1/(1 - ((1 - Sqrt[1 - 4 x])/2)^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[1/n Sum[Binomial[2n - k - 1, n - k] k PartitionsQ[k], {k, n}], {n, 29}]]

Formula

G.f.: Product_{k>=1} 1/(1 - ((1 - sqrt(1 - 4*x))/2)^(2*k-1)).
Sum_{n>=0} a(n)*(x*(1 - x))^n = g.f. of A000009.
a(n) = (1/n) * Sum_{k=1..n} binomial(2*n-k-1,n-k)*k*A000009(k) for n > 0.
a(n) ~ c * 4^n / n^(3/2), where c = 1/sqrt(Pi) * Sum_{k>=0} k*A000009(k)/2^(k+1) = 1.12333545392999500455446757207126193339498222754079045166328600452997969... - Vaclav Kotesovec, Jan 28 2020, extended Aug 01 2022

A143464 Catalan transform of the Pell sequence.

Original entry on oeis.org

0, 1, 3, 11, 42, 164, 649, 2591, 10408, 41998, 170050, 690370, 2808714, 11446642, 46715469, 190876527, 780679200, 3195628806, 13090353594, 53655587034, 220045073988, 902842397664, 3705876933930, 15216954519222, 62503485455208
Offset: 0

Views

Author

Sergio Falcon, Oct 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n==0, 0, Sum[i*Binomial[2n-i,n-i]*Fibonacci[i,2]/(2n-i), {i,n}]];
    Table[a[n], {n,0,30}] (* modified by G. C. Greubel, May 31 2022 *)
  • PARI
    my(x='x+O('x^66)); concat([0],Vec((1-5*x-(1+x)*sqrt(1-4*x))/(2*x^2+16*x-4))) \\ Joerg Arndt, May 01 2013
    
  • SageMath
    def Pell(n): return round( ((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2)) )
    [0]+[(1/n)*sum(k*binomial(2*n-k-1, n-1)*Pell(k) for k in (1..n)) for n in (1..30)] # G. C. Greubel, May 31 2022

Formula

a(n) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n)*Pell(j), with a(0) = 0.
From Philippe Deléham, Oct 28 2008: (Start)
a(n) = Sum_{k=0..n} A106566(n,k)*A000129(k).
a(n) = Sum_{k=0..n} A039599(n,k)*A000035(k)*A016116(k). (End)
G.f.: ((1+x)*sqrt(1-4*x) - (1-5*x))/(2*(2 - 8*x - x^2)). - Mark van Hoeij, May 01 2013
a(n) = (1/(2*sqrt(2)))*Catalan(n-1)*Sum_{j=0..1} ((-1)^j + sqrt(2)) * Hypergeometric2F1([2,1-n], [2*(1-n)], 1+(-1)^j*sqrt(2)) - [n=0]/2. - G. C. Greubel, May 31 2022
a(n) ~ (1 + sqrt(2))^(2*n - 1) / 2^(2 + n/2). - Vaclav Kotesovec, May 31 2022

Extensions

Offset corrected by Philippe Deléham, Oct 28 2008

A084868 Main diagonal of symmetric square table A084867, in which the antidiagonal sums (A006012) form the first row shifted left.

Original entry on oeis.org

1, 2, 8, 36, 168, 796, 3800, 18216, 87536, 421292, 2029592, 9784088, 47187536, 227651352, 1098523504, 5301727824, 25590307552, 123529362124, 596337248024, 2878947861432, 13899229883024, 67105641925064, 323993230750672
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003, Jun 11 2003

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence is A000302 (powers of 4): 1, 4, 16, 64, 256, 1024, ... - Philippe Deléham, Aug 17 2005

Examples

			1 + 2*x + 8*x^2 + 36*x^3 + 168*x^4 + 796*x^5 + 3800*x^6 + 18216*x^7 + ...
		

Crossrefs

Programs

  • Maple
    1/(1-x/(sqrt(1/4-x))): series(%,x,23): seq(coeff(%,x,n),n=0..22); # Peter Luschny, Feb 06 2017
  • Mathematica
    Table[SeriesCoefficient[((1-4*x)+2*x*Sqrt[1-4*x])/(1-4*x-4*x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff((1 - 4*x + 2*x * sqrt(1 - 4*x + x * O(x^n))) /(1 - 4*x - 4*x^2), n))} /* Michael Somos, Jan 05 2012 */

Formula

Differential equation: (16*x^3 + 12*x^2 - 8*x + 1) * x*(d/dx)A(x) + (8x^3 - 12*x^2 + 6*x - 1) * A(x) + (8x^2 - 6*x + 1) = 0.
G.f.: ((1 - 4*x) + 2*x * sqrt(1 - 4*x)) / (1 - 4*x - 4*x^2). a(n) * (n-1) = a(n-1) * (8*n - 14) - a(n-2) * 12*(n-3) - a(n-3) * 8*(2*n - 5), n > 2. Hankel number wall zig-zag diagonal is A011782. - Michael Somos, Sep 14 2003
INVERT transform of A028329 (offset 1). - Michael Somos, Jan 05 2012
G.f.: (1-2*x*f(x))/(1-2*x*f(x)-2*x) where f(x) is the g.f. of A000108 (Catalan numbers). - Philippe Deléham, Jan 30 2012
a(n) ~ (1-1/sqrt(2))*(2+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 14 2012
From Peter Bala, Feb 05 2017: (Start)
G.f: sqrt(1 - 4*x)/(sqrt(1 - 4*x) - 2*x) = 1/(1 - 2*x/(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))) (continued fraction). Cf. A026671, A081696.
Catalan transform of A006012, that is, equals A106566*A006012, as noted by R. J. Mathar. (End)

A102625 Triangle read by rows: T(n,k) is the sum of the weights of all vertices labeled k at depth n in the Catalan tree (1 <= k <= n+1, n >= 0).

Original entry on oeis.org

1, 1, 2, 3, 6, 6, 15, 30, 36, 24, 105, 210, 270, 240, 120, 945, 1890, 2520, 2520, 1800, 720, 10395, 20790, 28350, 30240, 25200, 15120, 5040, 135135, 270270, 374220, 415800, 378000, 272160, 141120, 40320, 2027025, 4054050, 5675670, 6486480
Offset: 0

Views

Author

Emeric Deutsch, Jan 31 2005

Keywords

Comments

The Catalan tree is defined as follows: the root is labeled 1 and each vertex labeled i has i+1 children labeled 1,2,...,i+1. The weight of a vertex v is the product of all labels on the path from the root to v. Row n contains n+1 terms. Row sums and column 1 yield the double factorials (A001147). T(n,n+1)=(n+1)!, T(n,n)=n(n+1)!/2 (A001286; Lah numbers).
This table counts permutations of the multiset {1,1,2,2,...,n,n} satisfying the condition "the first appearance of i + 1 follows the first appearance of i" by the position of the first appearance of n. Specifically, T(n+1,k) is the number of such permutations for which n first occurs in position 2n+1-k. For example, with n=2 and k=1, T(3,1)=6 counts 121323, 121332, 122313, 122331, 112323, 112332. - David Callan, Nov 29 2007
T(n+1,k) is also the number of rooted complete binary forests with n labeled leaves and k labeled roots. This follows by comparing exponential generating functions; see Example 5.2.6 and Proposition 5.1.3 of Stanley's "Enumerative Combinatorics 2." - Timothy Y. Chow, Mar 28 2017

Examples

			Triangle starts:
   1;
   1,  2;
   3,  6,  6;
  15, 30, 36, 24;
  ...
Production matrix begins:
1, 2
1, 2, 3
1, 2, 3, 4
1, 2, 3, 4, 5
1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6, 7
1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4, 5, 6, 7, 8, 9
... - _Philippe Deléham_, Sep 30 2014
From _Peter Bala_, Apr 16 2017: (Start)
The Catalan tree starts          o1
                                / \
                               /   \
                              /     \
                             /       \
                            /         \
                           o1          o2
                          / \         /|\
                         /   \       / | \
                        /     \     /  |  \
                       o1      o2  o1  o2  o3
Level 2:
2 vertices labeled 1: total weight 1x1x1 + 1x2x1 = 3
2 vertices labeled 2: total weight 2x1x1 + 2x2x1 = 6
1 vertex labeled 3:   total weight 3x2x1         = 6
(End)
		

Crossrefs

Programs

  • Maple
    A102625:=proc(n,k) if k<=n+1 then k*(2*n-k+1)!/2^(n-k+1)/(n-k+1)! else 0 fi end proc:
    for n from 0 to 8 do seq(A102625(n,k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    t[n_, k_] := k*(2n-k+1)!/(2^(n-k+1)*(n-k+1)!); Table[t[n, k], {n, 0, 8}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jan 21 2013 *)
  • PARI
    {T(n, k) = my(m = n-k+1); if( k<1 || k>n+1, 0, k * (n+m)! / (2^m * m!))}; /* Michael Somos, Aug 16 2016 */

Formula

T(n,k) = k*(2*n-k+1)!/[2^(n-k+1)*(n-k+1)!] (1 <= k <= n+1).
From Tom Copeland, Nov 11 2007: (Start)
Bivariate G.F.: exp[P(.,t)*x] = D_x {1 - [g(x)/(1+t*g(x))]} = 1 / {(1+g(x))*[1+t*g(x)]^2}, where g(x) = sqrt(1-2*x) - 1 and P(n,t) = Sum_{k=0..n} T(n,k) * t^k.
Also D_x g(x) = -(1-2*x)^(-1/2) = -exp[x*A001147(.)] = -exp[x *(2*(.)-1)!! ], so the coefficients of x^n/n! in the expansion of g(x) are -(2*(n-1)-1)!! = -A001147(n-1) for n > 0.
See A132382 for an array which is essentially the revert from which this G.f. may be derived and for connections to other arrays. (End)
E.g.f.: 1/(1 - x + x*sqrt(1-2*z)) = 1 + x*z + (x+2*x^2)*z^2/2! + (3*x+6*x^2+6*x^3)*z^3/3! + .... T(n,k) gives the number of plane recursive trees on n+2 nodes where the root has degree k (Bergeron et al., Corollary 5). - Peter Bala, Jul 09 2012
From Peter Bala, Jul 09 2014: (Start)
T(n,k) = k!*A001497(n,k) modulo offset differences.
The n-th row polynomial R(n,x) = (-1)^n/(x - 1)*( Sum_{k = 1..infinity} k*(k - 2)*...*(k - 2*n)*(x/(x - 1))^k ). Cf. the Dobinski-type formula for the row polynomials of A001497. (End)
From Tom Copeland, Aug 06 2016: (Start)
From the 2007 formulas above, an alternate g.f. for this entry is GF(x,t) = -g(x) / [1 + t*g(x)] = x + (1 + 2*t)*x^2/2! + (3 + 6*t + 6*t^2)*x^3/3! + ... with compositional inverse GFinv(x,t) = {1 - [1 - x / (1+t*x)]^2} / 2 = -(1/2)[x / (1+t*x)]^2 + x / (1+t*x) = Sum_{n>0} (-1)^(n+1) [(n-1)/2*t^(n-2) + t^(n-1)]*x^n, a series containing the Lah numbers A001286 when expressed as an e.g.f.
From A145271, with K(x,t) = 1 / dGinv(x,t)/dx = 1 + (1+2*t) x + (1+t+t^2) x^2 + x^3 / [1-(1-t)*x], then [K(x,t) d/dx]^n x evaluated at x=0 gives the n-th row polynomial of this entry.
Since the reciprocal of Bala's e.g.f. above generates a shifted, signed A001147, for the polynomials P(n,t) generated by Bala's e.g.f., umbrally (P(.,t) + a.)^n = 0 for n > 0 with a_0 = 1 and a_n = -t * A001147(n-1) for n > 0. E.g., (P(.,t) + a.)^2 = a_0 * P(2,t) + 2 a_1 * P(1,t) + a_2 * P(0,t) = 1 * (t + 2*t^2) + 2 * -t * t + -t * 1 = 0. (End)
From Peter Bala, Apr 16 2017: (Start)
T(n,k) = k*T(n-1,k-1) + (2*n - k)*T(n-1,k).
E.g.f.: t*x*c(x/2)/(1 - t*x*c(x/2)) = t*x + (t + 2*t^2)*x^2/2! + (3*t + 6*t^2 + 6*t^2)*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. for the Catalan numbers A000108. Note that the related g.f. t*x*c(x)/(1 - t*x*c(x)) is the o.g.f. for A033184 (essentially the same as the Riordan array A106566) and enumerates the number of vertices labeled k on the n_th level of the Catalan tree (k >= 1, n >= 0). (End)

A127543 Triangle T(n,k), 0<=k<=n, read by rows given by :[ -1,1,1,1,1,1,1,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, -1, 1, -1, 1, -2, 0, 2, -1, 1, -6, 2, 1, 3, -1, 1, -18, 5, 7, 2, 4, -1, 1, -57, 17, 19, 13, 3, 5, -1, 1, -186, 56, 64, 36, 20, 4, 6, -1, 1, -622, 190, 212, 124, 56, 28, 5, 7, -1, 1, -2120, 654, 722, 416, 198, 79, 37, 6, 8, -1, 1, -7338, 2282, 2494, 1434, 673, 287, 105, 47, 7, 9, -1, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 01 2007

Keywords

Comments

Riordan array (2/(3-sqrt(1-4*x)), (1-sqrt(1-4*x))/(3-sqrt(1-4*x))). - Philippe Deléham, Jan 27 2014

Examples

			Triangle begins:
    1;
   -1,  1;
    0, -1,  1;
   -1,  1, -1,  1;
   -2,  0,  2, -1,  1;
   -6,  2,  1,  3, -1,  1;
  -18,  5,  7,  2,  4, -1,  1;
  -57, 17, 19, 13,  3,  5, -1, 1;
		

Programs

  • Mathematica
    A065600[n_, k_]:= If[k==n, 1, Sum[j*Binomial[k+j, j]*Binomial[2*(n-k-j), n-k]/(n-k-j), {j,0, Floor[(n-k)/2]}]];
    A127543[n_, k_]:= A065600[n-1,k-1] - A065600[n-1,k];
    Table[A127543[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 17 2021 *)
  • Sage
    def A065600(n,k): return 1 if (k==n) else sum( j*binomial(k+j, j)*binomial(2*(n-k-j), n-k)/(n-k-j) for j in (0..(n-k)//2) )
    def A127543(n,k): return A065600(n-1, k-1) - A065600(n-1, k)
    flatten([[A127543(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 17 2021

Formula

T(n,k) = A065600(n-1,k-1) - A065600(n-1,k).
Sum_{k=0..n} T(n,k)*x^k = A127053(n), A126985(n), A127016(n), A127017(n), A126987(n), A126986(n), A126982(n), A126984(n), A126983(n), A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for n= -8,-7,...,8,9 respectively.
Sum_{j>=0} T(n,j)*A007318(j,k) = A106566(n,k).
Sum_{j>=0} T(n,j)*A038207(j,k) = A039599(n,k).
Sum_{j>=0} T(n,j)*A027465(j,k) = A116395(n,k).
Previous Showing 41-50 of 58 results. Next