cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A077416 Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 13, 155, 1847, 22009, 262261, 3125123, 37239215, 443745457, 5287706269, 63008729771, 750817050983, 8946795882025, 106610733533317, 1270382006517779, 15137973344680031, 180385298129642593
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

7*b(n)^2 - 5*a(n)^2 = 2 with companion sequence b(n) = A077417(n), n>=0.
a(n) = L(n,-12)*(-1)^n, where L is defined as in A108299; see also A077417 for L(n,+12). - Reinhard Zumkeller, Jun 01 2005
The aerated sequence (b(n))n>=1 = [1, 0, 13, 0, 155, 0, 1857, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -10, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. - Peter Bala, May 12 2025

Crossrefs

Cf. A054320(n-1) with companion A072256(n), n>=1.

Programs

  • Magma
    I:=[1, 13]; [n le 2 select I[n] else 12*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    LinearRecurrence[{12,-1},{1,13},30] (* Harvey P. Dale, Apr 03 2013 *)
  • PARI
    x='x+O('x^30); Vec((1+x)/(1-12*x+x^2)) \\ G. C. Greubel, Jan 18 2018
    
  • Sage
    [(lucas_number2(n,12,1)-lucas_number2(n-1,12,1))/10 for n in range(1, 18)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = 12*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = S(n, 12) + S(n-1, 12) = S(2*n, sqrt(14)) with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(n, 12) = A004191(n).
G.f.: (1+x)/(1-12*x+x^2).
a(n) = (ap^(2*n+1) - am^(2*n+1))/(ap - am) with ap := (sqrt(7)+sqrt(5))/sqrt(2) and am := (sqrt(7)-sqrt(5))/sqrt(2).
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n-k,k) * 14^(n-k).
a(n) = sqrt((7*A077417(n)^2 - 2)/5).
From Peter Bala, May 09 2025: (Start)
a(n) = Dir(n, 6), where Dir(n, x) denotes the n-th row polynomial of the triangle A244419.
a(n)^2 - 12*a(n)*a(n+1) + a(n+1)^2 = 14.
More generally, for real x, a(n+x)^2 - 12*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 14, where a(n) := (ap^(2*n+1) - am^(2*n+1))/(ap - am), ap := sqrt(7/2) + sqrt(5/2) and am := sqrt(7/2) - sqrt(5/2), as given above.
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/14 (telescoping series).
Product_{n >= 1} (a(n) + 1)/(a(n) - 1) = sqrt(7/5) (telescoping product). (End)

A133607 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = -1, with 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, -2, 1, 0, 1, -1, -3, 2, 1, 0, 1, -1, -4, 3, 3, -1, 0, 1, -1, -5, 4, 6, -3, -1, 0, 1, -1, -6, 5, 10, -6, -4, 1, 0, 1, -1, -7, 6, 15, -10, -10, 4, 1, 0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 27 2007

Keywords

Comments

Previous name: Triangle T(n,k), 0<=k<=n, read by rows given by [0, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, -1;
  0, 1, -1, -1;
  0, 1, -1, -2, 1;
  0, 1, -1, -3, 2, 1;
  0, 1, -1, -4, 3, 3, -1;
  0, 1, -1, -5, 4, 6, -3, -1;
  0, 1, -1, -6, 5, 10, -6, -4, 1;
  0, 1, -1, -7, 6, 15, -10, -10, 4, 1;
  0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  0, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
Triangle A103631 begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 2, 1;
  0, 1, 1, 3, 2, 1;
  0, 1, 1, 4, 3, 3, 1;
  0, 1, 1, 5, 4, 6, 3, 1;
  0, 1, 1, 6, 5, 10, 6, 4, 1;
  0, 1, 1, 7, 6, 15, 10, 10, 4, 1;
  0, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1;
  0, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
  0, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1;
  ...
Triangle A108299 begins:
  1;
  1, -1;
  1, -1, -1;
  1, -1, -2, 1;
  1, -1, -3, 2, 1;
  1, -1, -4, 3, 3, -1;
  1, -1, -5, 4, 6, -3, -1;
  1, -1, -6, 5, 10, -6, -4, 1;
  1, -1, -7, 6, 15, -10, -10, 4, 1;
  1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
		

Crossrefs

Another version is A108299.
Unsigned version is A103631 (T(n,k) = A103631(n,k)*A057077(k)).

Programs

  • Mathematica
    m = 13
    (* DELTA is defined in A084938 *)
    DELTA[Join[{0, 1}, Table[0, {m}]], Join[{1, -2, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
    qStirling2[n_, k_, q_] /; 1 <= k <= n := q^(k-1) qStirling2[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}] qStirling2[n-1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[qStirling2[n, k, -1], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2020 *)
  • Sage
    from sage.combinat.q_analogues import q_stirling_number2
    for n in (0..9):
        print([q_stirling_number2(n,k).substitute(q=-1) for k in [0..n]])
    # Peter Luschny, Mar 09 2020

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A057077(n), A010892(n), A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n-1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 respectively .
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000007(n), A010892(n), A133631(n), A133665(n), A133666(n), A133667(n), A133668(n), A133669(n), A133671(n), A133672(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively .
G.f.: (1-x+y*x)/(1-x+y^2*x^2). - Philippe Deléham, Mar 14 2012
T(n,k) = T(n-1,k) - T(n-2,k-2), T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = -1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 14 2012

Extensions

New name from Peter Luschny, Mar 09 2020

A085260 Ratio-determined insertion sequence I(0.0833344) (see the link below).

Original entry on oeis.org

1, 12, 155, 2003, 25884, 334489, 4322473, 55857660, 721827107, 9327894731, 120540804396, 1557702562417, 20129592507025, 260127000028908, 3361521407868779, 43439651302265219, 561353945521579068
Offset: 1

Views

Author

John W. Layman, Jun 23 2003

Keywords

Comments

This sequence is the ratio-determined insertion sequence (RDIS) "twin" to A078362 (see the link for an explanation of "twin"). See A082630 or A082981 for recent examples of RDIS sequences.
a(n) = L(n,13), where L is defined as in A108299. - Reinhard Zumkeller, Jun 01 2005
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(11)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Seems to be positive values of x (or y) satisfying x^2 - 13xy + y^2 + 11 = 0. - Colin Barker, Feb 10 2014
It appears that the b-file, formulas and programs are based on the conjectured, so far apparently unproved recurrence relation. - M. F. Hasler, Nov 05 2018
Nonnegative y values in solutions to the Diophantine equation 11*x^2 - 15*y^2 = -4. The corresponding x values are in A126866. Note that a(n+1)^2 - a(n)*a(n+2) = -11. - Klaus Purath, Mar 21 2025

Crossrefs

Row 13 of array A094954.
Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,12]; [n le 2 select I[n] else 13*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 18 2018
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 13 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
    LinearRecurrence[{13,-1}, {1,12}, 30] (* G. C. Greubel, Jan 18 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1-x)/(1-13*x+x^2)) \\ G. C. Greubel, Jan 18 2018
    

Formula

It appears that the sequence satisfies a(n+1) = 13*a(n) - a(n-1). [Corrected by M. F. Hasler, Nov 05 2018]
If the recurrence a(n+2) = 13*a(n+1) - a(n) holds then for n > 0, a(n)*a(n+3) = 143 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
G.f.: x*(1-x)/(1 - 13*x + x^2). - Philippe Deléham, Nov 17 2008
For n>1, a(n) is the numerator of the continued fraction [1,11,1,11,...,1,11] with (n-1) repetitions of 1,11. - Greg Dresden, Sep 10 2019

A374439 Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0

Views

Author

Peter Luschny, Jul 22 2024

Keywords

Comments

There are several versions of Lucas and Fibonacci polynomials in this database. Our naming follows the convention of calling polynomials after the values of the polynomials at x = 1. This assumes a regular sequence of polynomials, that is, a sequence of polynomials where degree(p(n)) = n. This view makes the coefficients of the polynomials (the terms of a row) a refinement of the values at the unity.
A remarkable property of the polynomials under consideration is that they are dual in this respect. This means they give the Lucas numbers at x = 1 and the Fibonacci numbers at x = -1 (except for the sign). See the example section.
The Pell numbers and the dual Pell numbers are also values of the polynomials, at the points x = -1/2 and x = 1/2 (up to the normalization factor 2^n). This suggests a harmonized terminology: To call 2^n*P(n, -1/2) = 1, 0, 1, 2, 5, ... the Pell numbers (A000129) and 2^n*P(n, 1/2) = 1, 4, 9, 22, ... the dual Pell numbers (A048654).
Based on our naming convention one could call A162515 (without the prepended 0) the Fibonacci polynomials. In the definition above only the initial values would change to: T(n, k) = k + 1 for k < 1. To extend this line of thought we introduce A374438 as the third triangle of this family.
The triangle is closely related to the qStirling2 numbers at q = -1. For the definition of these numbers see A333143. This relates the triangle to A065941 and A103631.

Examples

			Triangle starts:
  [ 0] [1]
  [ 1] [1, 2]
  [ 2] [1, 2, 1]
  [ 3] [1, 2, 2,  2]
  [ 4] [1, 2, 3,  4,  1]
  [ 5] [1, 2, 4,  6,  3,  2]
  [ 6] [1, 2, 5,  8,  6,  6,  1]
  [ 7] [1, 2, 6, 10, 10, 12,  4,  2]
  [ 8] [1, 2, 7, 12, 15, 20, 10,  8,  1]
  [ 9] [1, 2, 8, 14, 21, 30, 20, 20,  5,  2]
  [10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
  |  n | A039834 & A000045 | A000032 |   A000129   |   A048654  |
  |  n |     -P(n,-1)      | P(n,1)  |2^n*P(n,-1/2)|2^n*P(n,1/2)|
  |    |     Fibonacci     |  Lucas  |     Pell    |    Pell*   |
  |  0 |        -1         |     1   |       1     |       1    |
  |  1 |         1         |     3   |       0     |       4    |
  |  2 |         0         |     4   |       1     |       9    |
  |  3 |         1         |     7   |       2     |      22    |
  |  4 |         1         |    11   |       5     |      53    |
  |  5 |         2         |    18   |      12     |     128    |
  |  6 |         3         |    29   |      29     |     309    |
  |  7 |         5         |    47   |      70     |     746    |
  |  8 |         8         |    76   |     169     |    1801    |
  |  9 |        13         |   123   |     408     |    4348    |
		

Crossrefs

Triangles related to Lucas polynomials: A034807, A114525, A122075, A061896, A352362.
Triangles related to Fibonacci polynomials: A162515, A053119, A168561, A049310, A374441.
Sums include: A000204 (Lucas numbers, row), A000045 & A212804 (even sums, Fibonacci numbers), A006355 (odd sums), A039834 (alternating sign row).
Type m^n*P(n, 1/m): A000129 & A048654 (Pell, m=2), A108300 & A003688 (m=3), A001077 & A048875 (m=4).
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way): A022087, A055389, A118658, A052542, A163271, A371596, A324969, A212804, A077985, A069306, A215928.
Columns include: A040000 (k=1), A000027 (k=2), A005843 (k=3), A000217 (k=4), A002378 (k=5).
Diagonals include: A000034 (k=n), A029578 (k=n-1), abs(A131259) (k=n-2).
Cf. A029578 (subdiagonal), A124038 (row reversed triangle, signed).

Programs

  • Magma
    function T(n,k) // T = A374439
      if k lt 0 or k gt n then return 0;
      elif k le 1 then return k+1;
      else return T(n-1,k) + T(n-2,k-2);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
    
  • Maple
    A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
    # Alternative, using the function qStirling2 from A333143:
    T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
    seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
    Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
  • Python
    from functools import cache
    @cache
    def T(n: int, k: int) -> int:
        if k > n: return 0
        if k < 2: return k + 1
        return T(n - 1, k) + T(n - 2, k - 2)
    
  • Python
    from math import comb as binomial
    def T(n: int, k: int) -> int:
        o = k & 1
        return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
    
  • Python
    def P(n, x):
        if n < 0: return P(n, x)
        return sum(T(n, k)*x**k for k in range(n + 1))
    def sgn(x: int) -> int: return (x > 0) - (x < 0)
    # Table of interpolated sequences
    print("|  n | A039834 & A000045 | A000032 |   A000129   |   A048654  |")
    print("|  n |     -P(n,-1)      | P(n,1)  |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
    print("|    |     Fibonacci     |  Lucas  |     Pell    |    Pell*   |")
    f = "| {0:2d} | {1:9d}         |  {2:4d}   |   {3:5d}     |    {4:4d}    |"
    for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
    
  • SageMath
    from sage.combinat.q_analogues import q_stirling_number2
    def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
    print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025

Formula

T(n, k) = 2^k' * binomial(n - k' - (k - k') / 2, (k - k') / 2) where k' = 1 if k is odd and otherwise 0.
T(n, k) = (1 + (k mod 2))*qStirling2(n, k, -1), see A333143.
2^n*P(n, -1/2) = A000129(n - 1), Pell numbers, P(-1) = 1.
2^n*P(n, 1/2) = A048654(n), dual Pell numbers.
T(2*n, n) = (1/2)*(-1)^n*( (1+(-1)^n)*A005809(n/2) - 2*(1-(-1)^n)*A045721((n-1)/2) ). - G. C. Greubel, Jan 23 2025

A164965 Cumulative sums of A010892.

Original entry on oeis.org

1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0
Offset: 0

Views

Author

Mark Dols, Sep 02 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-Floor[1/6 (-4 + n)] - Floor[1/6 (-3 + n)] + Floor[1/6 (-1 + n)] + Floor[n/6], {n, 0, 100}] (* John M. Campbell, Dec 23 2016 *)
    LinearRecurrence[{2,-2,1},{1,2,2},100] (* Harvey P. Dale, Jul 17 2020 *)

Formula

G.f.: 1/((1 - x)*(1 - x + x^2)). - Philippe Deléham, Oct 11 2011
a(n) = a(n-1) - a(n-2) + 1. - Arkadiusz Wesolowski, Jun 08 2013
a(n) = -floor((n - 4)/6) - floor((n - 3)/6) + floor((n - 1)/6) + floor(n/6). - John M. Campbell, Dec 23 2016
E.g.f.: cosh(x) + 2*exp(x/2)*sin(sqrt(3)*x/2)/sqrt(3) + sinh(x). - Stefano Spezia, Feb 20 2023

Extensions

Offset corrected by John M. Campbell, Dec 23 2016

A187660 Triangle read by rows: T(n,k) = (-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n.

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, -2, -1, 1, 1, -2, -3, 1, 1, 1, -3, -3, 4, 1, -1, 1, -3, -6, 4, 5, -1, -1, 1, -4, -6, 10, 5, -6, -1, 1, 1, -4, -10, 10, 15, -6, -7, 1, 1, 1, -5, -10, 20, 15, -21, -7, 8, 1, -1, 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1
Offset: 0

Views

Author

L. Edson Jeffery, Mar 12 2011

Keywords

Comments

Conjecture: (i) Let n > 1 and N=2*n+1. Row n of T gives the coefficients of the characteristic polynomial p_N(x)=Sum_{k=0..n} T(n,k)*x^(n-k) of the n X n Danzer matrix D_{N,n-1} = {{0,...,0,1}, {0,...,0,1,1}, ..., {0,1,...,1}, {1,...,1}}. (ii) Let S_0(t)=1, S_1(t)=t and S_r(t)=t*S_(r-1)(t)-S_(r-2)(t), r > 1 (cf. A049310). Then p_N(x)=0 has solutions w_{N,j}=S_(n-1)(phi_{N,j}), where phi_{N,j}=2*(-1)^(j+1)*cos(j*Pi/N), j = 1..n. - L. Edson Jeffery, Dec 18 2011

Examples

			Triangle begins:
  1;
  1,  -1;
  1,  -1,  -1;
  1,  -2,  -1,   1;
  1,  -2,  -3,   1,   1;
  1,  -3,  -3,   4,   1,  -1;
  1,  -3,  -6,   4,   5,  -1,  -1;
  1,  -4,  -6,  10,   5,  -6,  -1,   1;
  1,  -4, -10,  10,  15,  -6,  -7,   1,   1;
  1,  -5, -10,  20,  15, -21,  -7,   8,   1,  -1;
  1,  -5, -15,  20,  35, -21, -28,   8,   9,  -1,  -1;
  1,  -6, -15,  35,  35, -56, -28,  36,   9, -10,  -1,   1;
		

Crossrefs

Signed version of A046854.
Absolute values of a(n) form a reflected version of A065941, which is considered the main entry.

Programs

  • Maple
    A187660 := proc(n,k): (-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k) end: seq(seq(A187660(n,k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
  • Mathematica
    t[n_, k_] := (-1)^Floor[3 k/2] Binomial[Floor[(n + k)/2], k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] (* L. Edson Jeffery, Oct 20 2017 *)

Formula

T(n,k) = (-1)^n*A066170(n,k).
abs(T(n,k)) = A046854(n,k) = abs(A066170(n,k)) = abs(A130777(n,k)).
abs(T(n,k)) = A065941(n,n-k) = abs(A108299(n,n-k)).

Extensions

Edited and corrected by L. Edson Jeffery, Oct 20 2017

A191314 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n and height k.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 2, 1, 12, 6, 1, 1, 20, 12, 2, 1, 33, 27, 8, 1, 1, 54, 53, 16, 2, 1, 88, 108, 44, 10, 1, 1, 143, 208, 88, 20, 2, 1, 232, 405, 208, 65, 12, 1, 1, 376, 768, 415, 130, 24, 2, 1, 609, 1459, 908, 350, 90, 14, 1, 1, 986, 2734, 1804, 700, 180, 28, 2, 1, 1596, 5117, 3776, 1700, 544, 119, 16, 1
Offset: 0

Views

Author

Emeric Deutsch, May 31 2011

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,1) = A000071(n+1) (Fibonacci numbers minus 1).
Sum_{k>=0} k * T(n,k) = A191315(n).
Extracting the even numbered rows, we obtain triangle A205946 with row sums A000984. The odd numbered rows yield triangle A205945 with row sums A001700. - Gary W. Adamson, Feb 01 2012

Examples

			T(5,2) = 2 because we have HUUDD and UUDDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1,  1;
1,  2;
1,  4,  1;
1,  7,  2;
1, 12,  6, 1;
1, 20, 12, 2;
1, 33, 27, 8, 1;
		

Crossrefs

Programs

  • Maple
    F[0] := 1: F[1] := 1-z: for k from 2 to 12 do F[k] := sort(expand(F[k-1]-z^2*F[k-2])) end do: for k from 0 to 11 do h[k] := z^(2*k)/(F[k]*F[k+1]) end do: T := proc (n, k) options operator, arrow: coeff(series(h[k], z = 0, 20), z, n) end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1,
          (p->add(coeff(p, z, i)*z^max(i, y), i=0..degree(p,z)))
          (b(x-1, y-1))+ b(x-1, y+1)+`if`(y=0, b(x-1, y), 0)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Mar 12 2014
  • Mathematica
    b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x==0, 1, Function [{p}, Sum[ Coefficient[p, z, i]*z^Max[i, y], {i, 0, Exponent[p, z]}]][b[x-1, y-1]] + b[x-1, y+1] + If[y==0, b[x-1, y], 0]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: The g.f. of column k is z^{2k}/(F[k]*F[k+1]), where F[k] are polynomials in z defined by F[0]=1, F[1]=1-z, F[k]=F[k-1]-z^2*F[k-2] for k>=2. The coefficients of these polynomials form the triangle A108299.
Rows may be obtained by taking finite differences of A205573 columns from the top -> down. - Gary W. Adamson, Feb 01 2012

A205573 Array M read by antidiagonals in which successive rows evidently converge to A001405 (central binomial coefficients).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 1, 1, 1, 2, 3, 6, 8, 1, 1, 1, 2, 3, 6, 10, 13, 1, 1, 1, 2, 3, 6, 10, 19, 21, 1, 1, 1, 2, 3, 6, 10, 20, 33, 34, 1, 1, 1, 2, 3, 6, 10, 20, 35, 61, 55, 1, 1, 1, 2, 3, 6, 10, 20, 35, 69, 108, 89, 1
Offset: 0

Views

Author

L. Edson Jeffery, Jan 29 2012

Keywords

Comments

CONJECTURE 1. Let M(n,k) (n,k >= 0) denote the entry in row n and column k of the array. For all n, M(n,j) = A001405(j), j=0,...,2*n+1; hence row n of M -> A001405 as n -> infinity.
Taking finite differences of even numbered columns from the top -> down yields triangle A205946 with row sums A000984, central binomial coefficients; while odd numbered columns yield triangle A205945 with row sums A001700. A205946 and A205945 represent the bisection of A191314. - Gary W. Adamson, Feb 01 2012

Examples

			Array begins:
  1, 1, 1, 1, 1,  1,  1,  1,  1,   1,   1,...
  1, 1, 2, 3, 5,  8, 13, 21, 34,  55,  89,...
  1, 1, 2, 3, 6, 10, 19, 33, 61, 108, 197,...
  1, 1, 2, 3, 6, 10, 20, 35, 69, 124, 241,...
  1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251,...
  1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252,...
  ...
According to Conjecture 2, row n = 3 has g.f. F_3(x) = (1-2*x^2)/(1-x-3*x^2+2*x^3+x^4).
		

Crossrefs

Formula

Let N=2*n+3. For each n>0, define the (n+1) X (n+1) tridiagonal unit-primitive matrix (see [Jeffery]) B_n = A_{N,1} = [0,1,0,...,0; 1,0,1,0,...,0; 0,1,0,1,0,...,0; ...; 0,...,0,1,0,1; 0,...,0,1,1], and put B_0 = [1]. Then, for all n, M(n,k)=[(B_n)^k]{n+1,n+1}, k=0,1,..., where X{n+1,n+1} denotes the lower right corner entry of X.
CONJECTURE 2 (Rows of M). Let S(n,i) denote term i in row n of A115139, i=0,...,floor(n/2), and let T(n,j) denote term j in row n of A108299, j=0,...,n. The generating function for row n of M is of the form F_n(x) =sum[i=0,...,floor(n/2) S(n,i)*x^(2*i)]/sum[j=0,...,n T(n,j)*x^j].
CONJECTURE 3 (Columns of M). Let D(m,k) denote term m in column k of A191314, m=0,...,floor(k/2). The generating function for column k of M is of the form G_k(x)=sum[m=0,...,floor(k/2) D(m,k)*x^m]/(1-x).

A124645 Triangle T(n,k), 0<=k<=n, read by rows given by [1,-1,0,0,0,0,0,...] DELTA [ -1,2,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 1, -1, 0, 1, -1, 0, 1, -2, 1, 0, 0, 1, -2, 1, 0, 0, 1, -3, 3, -1, 0, 0, 0, 1, -3, 3, -1, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, 0, 1, -4, 6, -4, 1, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 1, -5, 10, -10, 5, -1, 0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1, 0, 0, 0, 0, 0, 0, 1, -6, 15, -20, 15, -6, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 13 2007, Aug 22 2007

Keywords

Comments

Matrix inverse of A108299.

Examples

			Triangle begins:
  1;
  1, -1;
  0,  1, -1;
  0,  1, -2,  1;
  0,  0,  1, -2,  1;
  0,  0,  1, -3,  3, -1;
  0,  0,  0,  1, -3,  3, -1;
  0,  0,  0,  1, -4,  6, -4,   1;
  0,  0,  0,  0,  1, -4,  6,  -4,   1;
  0,  0,  0,  0,  1, -5, 10, -10,   5, -1;
  0,  0,  0,  0,  0,  1, -5,  10, -10,  5, -1;
  0,  0,  0,  0,  0,  1, -6,  15, -20, 15, -6, 1;
		

Programs

  • Magma
    [(-1)^(k+Floor(n/2))*Binomial(Floor((n+1)/2), k-Floor(n/2)): k in [0..n], n in [0..12]]; // G. C. Greubel, May 01 2021
    
  • Mathematica
    Table[(-1)^(Floor[n/2]+k)*Binomial[Floor[(n+1)/2], k-Floor[n/2]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 01 2021 *)
  • Sage
    flatten([[(-1)^(k+(n//2))*binomial(((n+1)//2), k-(n//2)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 01 2021

Formula

Row n has g.f.: x^[n/2]*(1-x)^(n-[n/2]).
G.f.: (1-x*y+x)/(1-x^2*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
T(n, k) = (-1)^(k + floor(n/2)) * binomial(floor((n+1)/2), k - floor(n/2)). - G. C. Greubel, May 01 2021

A039961 Triangle of coefficients in a Fibonacci-like sequence of polynomials.

Original entry on oeis.org

1, 1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A108299. - Philippe Deléham, Feb 27 2014

Examples

			Triangle starts:
  1
  1
  1 -1
  1 -1 -1
  1 -1 -2 1
  1 -1 -3 2 1
  ...
		

References

  • A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.

Crossrefs

Formula

q_{n+2}(x) = x*q_{n+1}(x)-q_n(x), q_1(x) = q_2(x) = 1.

Extensions

More terms from Philippe Deléham, Feb 27 2014
Previous Showing 41-50 of 57 results. Next