cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A106228 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x*A(x)^2).

Original entry on oeis.org

1, 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236, 518848, 2384538, 11068567, 51817118, 244370806, 1159883685, 5536508864, 26560581688, 127993221140, 619280193640, 3007251366000, 14651743202152, 71601107803904, 350873710447210, 1723795243004223
Offset: 0

Views

Author

Paul D. Hanna, May 19 2005

Keywords

Comments

Number of paths from (0,0) to (3n-3,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have no tripledescents (ddd). Example: a(3)=6 because we have udud, Uddud, udUdd, UddUdd, uudd and Ududd (the remaining four paths contain the string ddd: uUddd, UdUddd, Uuddd and UUdddd; see A027307). - Emeric Deutsch, Jun 08 2005
a(n) = number of node-labeled ordered trees (A000108) on n vertices, each node labeled with a positive integer <= its outdegree. A node is a non-root non-leaf vertex. Example. a(3)=6 counts the 5 ordered trees on 4 vertices with all labels 1 and the tree
.|.
/ \
with its (one and only) node labeled 2. - David Callan, Jul 14 2006
a(n) = number of Schroeder (n-1)-paths with no triple descents. Example: a(4)=21 counts all 22 Schroeder 3-paths (A006318) except UUUDDD. - David Callan, Jul 14 2006
(1 + 2x + 6x^2 + ...)*(1 + x + 2x^2 + 6x^3) = (1 + 3x + 10x^2 + 37x^3 + ...), where A109081 = (1, 1, 3, 10, 37, ...). - Gary W. Adamson, Nov 15 2011
a(n) = number of Motzkin paths of length 2n-1 with no downsteps in odd position. Example: a(3)=6 counts FFFFF, FFUDF, FUFDF, UDFFF, UDUDF, UFFDF with U an upstep (1,1), F a flatstep (1,0), and D a downstep (1,-1). - David Callan, May 20 2015
Number of permutations of length n that avoid 4123, 4132, and 4213. - Jay Pantone, Oct 01 2015
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j) and e(i) <= e(k). [Martinez and Savage, 2.21] - Eric M. Schmidt, Jul 17 2017
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>3, 1>4, 4>2} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the fourth element is larger than the second element. - Sergey Kitaev, Dec 10 2020
a(n) is the number of peakless Motzkin paths of length 2n that do not start with an up edge and where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on 2n vertices where the leftmost vertex is not matched and only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021

Examples

			A = 1 + x*A + x^2*A^3 + x^3*A^5 + x^4*A^7 + x^5*A^9 + ...
a(4) = 21 since the top row terms of Q^3 = (10, 7, 3, 1). - _Gary W. Adamson_, Nov 15 2011
G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1347*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<2 then 1 elif n=2 then 2 else ((380*n^3-840*n^2+496*n-72)*a(n-1)+(76*n^3-282*n^2+302*n-84)*a(n-2)+(57*n^3-297*n^2+402*n-72)*a(n-3))/(76*n^3-54*n^2-46*n) fi end: seq(a(i),i=0..23); # Peter Luschny, Aug 03 2012
  • Mathematica
    Flatten[{1,Table[1/n*Sum[Binomial[n,k]*Binomial[n+k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 16 2013 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[{-n, 1 - n, n + 1}, {1, 3/2}, 1/4]]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(k=1,n,A=1+x*A/(1-x*A^2)); polcoeff(A,n)}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = (1 + x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n))) / 2; polcoeff( serreverse( x^2 / A), n))}; /* Michael Somos, Jun 18 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x /  (1 + 2*x + 2*x^2 + x^3) + x * O(x^n)), n))}; /* Michael Somos, Dec 31 2014 */
  • Sage
    from mpmath import mp
    mp.dps = 32; mp.pretty = True
    def A106228(n) : return int(mp.hyper([-n, 1-n, n+1], [1, 3/2], 1/4))
    [A106228(n) for n in (0..23)] # Peter Luschny, Aug 02 2012
    

Formula

G.f.: A(x) = (1/x)*series_reversion[x/(1 + x*G001006(x))] and thus G.f. satisfies: A(x) = 1 + x*A(x)*G001006(x*A(x)) where G001006(x) is the g.f. of Motzkin numbers A001006.
G.f.: 1 + x*exp( Sum_{n>=1} A082759(n)*x^n/n ), where A082759(n) = Sum_{k=0..n} binomial(n,k)*trinomial(n,k). - Paul D. Hanna, Nov 02 2012
a(n) = (1/n)sum(binomial(n, j+1)*b(n, j), j=0..n-1), where b(n, j) are the trinomial coefficients [b(n, j)=A027907(n, j)=coefficient of x^j in (1+x+x^2)^n]. - Emeric Deutsch, Jun 08 2005
Given g.f. A(x), then B(x) = x*A(x) satisfies 0 = f(x, B(x)) where f(x, y) = y^3 - (1+y)*x*(y-x). - Michael Somos, Jun 18 2005
a(n+1) = Sum[binomial(2n-2k,n-k)*binomial(n+k,n)/(n+1),{k,0,n}]. - David Callan, Aug 16 2006
For n>0: a(n) = 1/n*sum(binomial(n,j)*sum(binomial(j,i)*binomial(n-j,2*j-n-i-1)*2^(2*n-3*j+2*i+1),i=0..n-1), j=0..n); - Vladimir Kruchinin, Dec 26 2010
a(n) = 1/(n+1)*sum(binomial(n+1,k)*binomial(n+k+1,n-k),k,0,n); - Vladimir Kruchinin, Feb 28 2010
a(n) = upper left term in M^n, M = the production matrix:
1, 1
1, 1, 1
2, 2, 1, 1
3, 3, 2, 1, 1
4, 4, 3, 2, 1, 1
5, 5, 4, 3, 2, 1, 1
...
- Gary W. Adamson, Jul 08 2011
D-finite with recurrence: 4*n*(2*n+1)*a(n) + 2*(6-5*n-10*n^2)*a(n-1) + 12*(-9*n^2+35*n-33)*a(n-2) - 2*(n-3)*(13*n-28)*a(n-3) - 15*(n-3)*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 14 2011
From Gary W. Adamson, Nov 15 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q = the following infinite square production matrix:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 2, 1, 1, 0, ...
4, 3, 2, 1, 1, ...
5, 4, 3, 2, 1, ...
... (End)
a(n) = 3_F_2([-n, 1-n, n+1], [1, 3/2], 1/4). - Peter Luschny, Aug 02 2012
A four-term recurrence equation is given in the Maple program. Peter Luschny, Aug 03 2012
a(n) ~ 1/228*sqrt(114)*sqrt((32129+3933*sqrt(57))^(1/3) * ((32129+3933*sqrt(57))^(2/3) + 532 + 38*(32129+3933*sqrt(57))^(1/3))) / ((32129+3933*sqrt(57))^(1/3)) * (((1261+57*sqrt(57))^(2/3) + 112 + 10*(1261+57*sqrt(57))^(1/3)) / (6*(1261+57*sqrt(57))^(1/3)))^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
G.f. satisfies x*F(x)^3 - x*F(x)^2 + (x-1)*F(x) + 1 = 0. - Jay Pantone, Oct 01 2015
G.f. satisfies A(-x*A(x)^3) = 1/A(x). - Alexander Burstein, Dec 05 2019
G.f.: A(x) = sqrt(B(x)) where B(x) is the g.f. of A262441. - Seiichi Manyama, Mar 31 2024
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+3*k/2+1/2,n)/(n+3*k+1). - Seiichi Manyama, Apr 04 2024

A121988 Number of vertices of the n-th multiplihedron.

Original entry on oeis.org

0, 1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800, 431718990188850, 2160826237261692
Offset: 0

Views

Author

Jonathan Vos Post, Jun 24 2007

Keywords

Comments

G.f. = x*c(x)*c(x*c(x)) where c(x) is the generating function of the Catalan numbers C(n). Thus a(n) is the Catalan transform of the sequence C(n-1). Reference for the definition of Catalan transform is the paper by Paul Barry. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
A129442 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by putting the sequence [0, 1, 1, 2, 5, 14, 42, ...] of Catalan numbers (with 0 prepended) in the first column (k = 0) of the array and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1.
0
1 1
1 2 2
2 4 6 6
5 9 15 21 21
14 23 38 59 80 80
...
Cf. A307495.
Alternatively, the sequence can be obtained by multiplying the sequence of Catalan numbers by the array A106566. (End)

Examples

			G.f. = x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1348*x^7 + 5814*x^8 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n, (14*(n-1)*(2*n-3)*a(n-1)
          -4*(4*n-9)*(4*n-7)*a(n-2))/ (3*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 20 2012
  • Mathematica
    a[0] = 0; a[n_] := a[n] = (2 n - 2)!/((n - 1)! n!) + Sum[ a[i]*a[n - i], {i, n - 1}]; Table[ a@n, {n, 0, 24}] (* Robert G. Wilson v, Jun 28 2007 *)
    a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ x - 2 x^2 + 2 x^3 - x^4, {x, 0, n}]], {x, 0, n}]]; (* Michael Somos, Jun 01 2014 *)
    a[0] = 0; a[n_] := Binomial[2n-2, n-1]*Hypergeometric2F1[1/2, 1-n, 2-2n, 4] /n; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x - 2*x^2 + 2*x^3 - x^4 + x * O(x^n)), n))}; /* Michael Somos, Jun 01 2014 */

Formula

a(0) = 0; a(n) = C(n-1) + Sum_{i=1..n-1} a(i)*a(n-i), where C(n) = A000108(n).
G.f.: (1-sqrt(2*sqrt(1-4x)-1))/2. a(n) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1,n-1)*binomial(2k-2, k-1); a(0)=0. - Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
a(n) = Sum_{k = 0..n} A106566(n,k)*A000108(k-1) with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
From Vaclav Kotesovec, Oct 19 2012: (Start)
D-finite with recurrence 3*(n-1)*n*a(n) = 14*(n-1)*(2*n-3)*a(n-1) - 4*(4*n-9)*(4*n-7)*a(n-2).
a(n) ~ 2^(4*n-5/2)/(sqrt(Pi)*3^(n-1/2)*n^(3/2)). (End)
G.f.: A(x) satisfies A(x)=x*(1+A(x))/((1-A(x))*(1+A(x)^3)). - Vladimir Kruchinin, Jun 01 2014
G.f. is series reversion of (x - x^2) * (1 - x + x^2) = x - 2*x^2 + 2*x^3 - x^4. - Michael Somos, Jun 01 2014
From Peter Bala, Aug 22 2024: (Start)
G.f. A(x) = 1 - 1/c(x*c(x)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
Sum_{n >= 1} a(n)*y^n = x*c(x), where y = x*(1 - x). (End)

Extensions

More terms from Robert G. Wilson v, Jun 28 2007

A366034 G.f. A(x) satisfies A(x) = 1/(1 - x)^3 + x*(1 - x)^3*A(x)^3.

Original entry on oeis.org

1, 4, 15, 70, 405, 2676, 19075, 142562, 1100961, 8711968, 70257055, 575269278, 4769615773, 39961571228, 337805166747, 2877506096794, 24675158973081, 212835736433304, 1845348003175063, 16073746202176150, 140590118902532757, 1234285061013293716
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+2, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+2,n-k) * binomial(3*k,k)/(2*k+1).

A164925 Array, binomial(j-i,j), read by rising antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, 0, 1, 1, -2, 0, 0, 1, 1, -3, 1, 0, 0, 1, 1, -4, 3, 0, 0, 0, 1, 1, -5, 6, -1, 0, 0, 0, 1, 1, -6, 10, -4, 0, 0, 0, 0, 1, 1, -7, 15, -10, 1, 0, 0, 0, 0, 1, 1, -8, 21, -20, 5, 0, 0, 0, 0, 0, 1, 1, -9, 28, -35, 15, -1, 0, 0, 0, 0, 0, 1, 1, -10, 36, -56, 35, -6, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Mark Dols, Aug 31 2009

Keywords

Comments

Inverse of A052509, or A004070???

Examples

			Array, A(n, k), begins as:
  1,  1,  1,   1,  1,   1,  1,  1,  1, ...
  1,  0,  0,   0,  0,   0,  0,  0,  0, ...
  1, -1,  0,   0,  0,   0,  0,  0,  0, ...
  1, -2,  1,   0,  0,   0,  0,  0,  0, ...
  1, -3,  3,  -1,  0,   0,  0,  0,  0, ...
  1, -4,  6,  -4,  1,   0,  0,  0,  0, ...
  1, -5, 10, -10,  5,  -1,  0,  0,  0, ...
  1, -6, 15, -20, 15,  -6,  1,  0,  0, ...
  1, -7, 21, -35, 35, -21,  7, -1,  0, ...
Antidiagonal triangle, T(n, k), begins as:
  1;
  1,  1;
  1,  0,  1;
  1, -1,  0,  1;
  1, -2,  0,  0,  1;
  1, -3,  1,  0,  0,  1;
  1, -4,  3,  0,  0,  0,  1;
  1, -5,  6, -1,  0,  0,  0,  1;
  1, -6, 10, -4,  0,  0,  0,  0,  1;
		

Crossrefs

Programs

  • Magma
    A164925:= func< n,k | k eq 0 or k eq n select 1 else Binomial(2*k-n,k) >;
    [A164925(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2023
    
  • Mathematica
    T[n_, k_]:= If[k==0 || k==n, 1, Binomial[2*k-n, k]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 10 2023 *)
  • PARI
    {A(i, j) = if( i<0, 0, if(i==0 || j==0, 1, binomial(j-i, j)))}; /* Michael Somos, Jan 25 2012 */
    
  • SageMath
    def A164925(n,k): return 1 if (k==0 or k==n) else binomial(2*k-n, k)
    flatten([[A164925(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 10 2023

Formula

Sum_{k=0..n} T(n, k) = A164965(n). - Mark Dols, Sep 02 2009
From G. C. Greubel, Feb 10 2023: (Start)
A(n, k) = binomial(k-n, k), with A(0, k) = A(n, 0) = 1 (array).
T(n, k) = binomial(2*k-n, k), with T(n, 0) = T(n, n) = 1 (antidiagonal triangle).
Sum_{k=0..n} (-1)^k*T(n, k) = A008346(n).
Sum_{k=0..n} (-2)^k*T(n, k) = (-1)^n*A052992(n). (End)

Extensions

Edited by Michael Somos, Jan 26 2012
Offset changed by G. C. Greubel, Feb 10 2023

A115360 Period 6: repeat [1,-1,1,0,0,0].

Original entry on oeis.org

1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, -1, 1
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Comments

Diagonal sums of number triangle A115359.
The partial sum operator applied twice gives A001399. - Gregory L. Simay, Sep 30 2017

Crossrefs

Programs

  • Magma
    &cat[[1,-1,1,0,0,0]: n in [0..15]]; // Vincenzo Librandi, Sep 09 2015
  • Mathematica
    LinearRecurrence[{-1, 0, 1, 1}, {1, -1, 1, 0}, 100] (* Vincenzo Librandi, Sep 09 2015 *)

Formula

G.f.: 1/(1 + x - x^3 - x^4) = 1/( (1+x)*(1-x)*(1+x+x^2)).
a(n) = -a(n-1) + a(n-3) + a(n-4), n > 3.
a(n) = cos(2*Pi*n/3)/3 - sin(2*Pi*n/3)/sqrt(3) + cos(Pi*n)/2 + 1/6.
a(n) = Sum_{k=0..floor(n/2)} if(n-k=k, 1, 0) OR if(n-k=2k+1, -1, 0).
a(n) = (1/2)*((-1)^n + i^(4-2*(n mod 3))), where i=sqrt(-1). - Bruno Berselli, Oct 31 2012
a(n) = (floor(n/6) - floor((n-3)/6))*(-1)^n. - Wesley Ivan Hurt, Sep 08 2015
|a(n)-a(n-1)| = A164965(n). a(n)+a(n-1) = A079978(n). - R. J. Mathar, Aug 11 2021
a(n) = sign((n-4) mod 3) - sign((n-4) mod 2). - Wesley Ivan Hurt, Feb 04 2022

A164976 Triangle read by rows, expansion of 1/(1-2*y*x-x+x^2-y*x^2).

Original entry on oeis.org

1, 1, 2, 0, 5, 4, -1, 4, 16, 8, -1, -3, 25, 44, 16, 0, -10, 7, 102, 112, 32, 1, -8, -41, 97, 344, 272, 64, 1, 4, -74, -80, 528, 1040, 640, 128, 0, 15, -33, -366, 121, 2168, 2928, 1472, 256, -1, 12, 75, -426, -1219, 1898, 7664, 7840, 3328, 512
Offset: 0

Views

Author

Mark Dols, Sep 03 2009

Keywords

Comments

Leftmost column is A010892.
Rows sum up to A000244 and diagonals to A000073.
A164975 has a similar g.f.: x/(1-2*y*x-x-x^2+y*x^2).. - Georg Fischer, Oct 15 2023

Examples

			Triangle begins:
   1;
   1,   2;
   0,   5,   4;
  -1,   4,  16,   8;
  -1,  -3,  25,  44,  16;
   0, -10,   7, 102, 112,  32;
   1,  -8, -41,  97, 344, 272, 64;
  ...
		

Crossrefs

Cf. A010892 (1st column), A000079 (right diagonal).

Programs

  • Maple
    s := 1/(1-2*y*x-x+x^2-y*x^2): t := series(s, x, 12):
    seq(print(seq(coeff(coeff(t, x, n), y, m), m=0..n)), n=0..11); # Georg Fischer, Oct 15 2023

Extensions

Missing commas inserted in what used to be the term "1-8-41" (now "1,-8,-41") by Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
Definition changed by Georg Fischer, Oct 15 2023

A144083 Triangle read by rows: partial sums from the right of an A010892 subsequences decrescendo triangle.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 1, 0, 0, 1, 2, 2, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1
Offset: 0

Views

Author

Gary W. Adamson, Sep 10 2008

Keywords

Comments

n-th row = (n+1) terms of an infinitely periodic cycle: (..., 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1), shifting to the right one place for the next row.
Construct an A010892 decrescendo triangle: (1; 1,1; 0,1,1; -1,0,1,1; ...) and take partial sums starting from the right.

Examples

			First few rows of the triangle:
  1;
  2, 1;
  2, 2, 1;
  1, 2, 2, 1;
  0, 1, 2, 2, 1;
  0, 0, 1, 2, 2, 1;
  1, 0, 0, 1, 2, 2, 1;
  2, 1, 0, 0, 1, 2, 2, 1;
  2, 2, 1, 0, 0, 1, 2, 2, 1;
  1, 2, 2, 1, 0, 0, 1, 2, 2, 1;
  0, 1, 2, 2, 1, 0, 0, 1, 2, 2, 1;
  ...
Row 3 = (1, 2, 2, 1) = partial sums of (-1, 0, 1, 1).
		

Crossrefs

Cf. A010892, A077859 (row sums), A164965 (1st column).

Programs

  • Mathematica
    A010892[n_]:={1, 1, 0, -1, -1,0}[[Mod[n, 6]+1]]; T[n_,k_]:=1+A010892[n-k-1]; Table[T[n,k], {n,0, 11},{k,0,n}]//Flatten (* Stefano Spezia, Feb 11 2023 *)

Formula

T(n, k) = 1 + A010892(n-k-1), with 0 <= k <= n. - Stefano Spezia, Feb 11 2023

A366215 G.f. A(x) satisfies A(x) = 1/(1 - x)^4 + x*(1 - x)^4*A(x)^4.

Original entry on oeis.org

1, 5, 26, 200, 1995, 22522, 272152, 3437280, 44806905, 598204475, 8137535934, 112382617018, 1571496538035, 22205618546014, 316570999534832, 4547819503936622, 65770112191659609, 956743348385310031, 13989838139093922658, 205511713513718581234
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+7*k+3, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+7*k+3,n-k) * binomial(4*k,k)/(3*k+1).
Showing 1-8 of 8 results.