cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A109081 Reversion of x*(1-x)*(1-x^2)*(1-x^3)/(1-x^6) = x*(1-x)^2/(1-x+x^2).

Original entry on oeis.org

1, 1, 3, 10, 37, 146, 602, 2563, 11181, 49720, 224540, 1027038, 4748042, 22150519, 104146733, 493012682, 2347796965, 11239697816, 54061835288, 261130778516, 1266125122956, 6160158505040, 30065608532008, 147161532388934
Offset: 1

Views

Author

Michael Somos, Jun 17 2005

Keywords

Comments

From David Callan, Mar 30 2007: (Start)
a(n) is the number of vertex-labeled ordered trees (A000108) on n vertices, in which each non-leaf vertex is labeled with a positive integer <= its outdegree. Example. a(3)=3 counts the trees on 3 vertices with labels as shown (the 2 edges in each tree are shown, you have to visualize the vertices).
.
1 2 1
/ \ / \ |1
|
.
Proof. Let F(x) = x + x^2 + 3x^3 + ... denote the g.f. for these trees, with x marking number of vertices. Counting these trees by degree of the root leads to F = x + Sum_{k>=1} k*x*F^k, or F = x + x*F/(1-F)^2. This is the same equation as that satisfied by the reversion of x*(1-x)*(1-x^2)*(1-x^3)/(1-x^6) = x*(1-x)^2/(1-x+x^2). (End)
(1 + 3x + 10x^2 + ...) = (1 + 2x + 6x^2 + ...)*(1 + x + 2x^2 + 6x^3 + ...), where A106228 = (1, 1, 2, 6, 21, ...). - Gary W. Adamson, Nov 15 2011
Reversion of x/(1 + sum(k>=1, k*x^k )) (cf. A028310). - Joerg Arndt, Aug 19 2012
a(n) is the number of Motzkin paths of length 2n-3 with no downsteps in even position (n>=2). Example: a(3)=3 counts FFF, FUD, UFD, where U denotes an upstep (1,1), F a flatstep (1,0), and D a downstep (1,-1). - David Callan, May 20 2015
a(n) is the number of peakless Motzkin paths of length 2n-2 where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on 2n-2 vertices where only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021

Examples

			a(5) = 37 = the upper left term of M^4: (37, 26, 12, 4, 1); where (37 + 26 + 12 + 4 + 1) = 80 = A106228(5). - _Gary W. Adamson_, Nov 15 2011
G.f. = x + x^2 + 3*x^3 + 10*x^4 + 37*x^5 + 146*x^6 + 602*x^7 + 2563*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [&+[Binomial(n, k)/(n-k+1)*Binomial(n+k-1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
  • Maple
    S:= series(RootOf(-x*z^2+z^3+x*z-2*z^2-x+z, z), x, 101):
    seq(coeff(S,x,j),j=1..100); # Robert Israel, Nov 19 2015
  • Mathematica
    a[ n_] := If[ n < 2, Boole[n == 1], (n - 1) HypergeometricPFQ[ {n, 1 - n, 2 - n}, {3/2, 2}, 1/4]]; (* Michael Somos, May 28 2014 *)
    Join[{1}, Table[Sum[ Binomial[n,k] / (n-k+1) Binomial[n+k-1, n-k], {k, n}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( x * (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) + x * O(x^n)), n))};
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)/(n-k+1)*binomial(n+k-1,n-k))} \\ Paul D. Hanna, Jun 19 2009
    
  • Sage
    def A109081(n) :
        return (n-1)*hypergeometric([n,1-n,2-n],[3/2, 2],1/4) if n > 1 else 1
    [simplify(A109081(n)) for n in (1..24)] # Peter Luschny, Aug 02 2012, Nov 13 2014
    

Formula

G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = x*(1 - y + y^2) - y*(1 - y)^2.
G.f. A(x) satisfies 0 = f(x, A(x)) where f(x, y) = y*(1 - y)*((1 - y) / x + 1) - 1.
From Paul D. Hanna, Jun 19 2009: (Start)
G.f. satisfies: A(x) = x/(1 - x/(1 - A(x))^2).
a(n) = Sum_{k=0..n} C(n,k)/(n-k+1) * C(n+k-1,n-k). (End)
From Gary W. Adamson, Nov 15 2011: (Start)
a(n) is the upper left term in M^(n-1), M = an infinite square matrix as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 2, 1, 1, 0, ...
4, 3, 2, 1, 1, ...
5, 4, 3, 2, 1, ...
... (End)
With different signs, g.f. = 2/(3-sqrt(1-4xC(x))) where C = g.f. for A000108 [He-Shapiro]. - N. J. A. Sloane, Apr 28 2017
From Vaclav Kotesovec, Aug 14 2018: (Start)
Recurrence: 2*n*(2*n - 1)*(19*n^2 - 85*n + 90)*a(n) = 2*(190*n^4 - 1230*n^3 + 2783*n^2 - 2595*n + 828)*a(n-1) + 2*(n-3)*(38*n^3 - 189*n^2 + 289*n - 132)*a(n-2) + 3*(n-4)*(n-3)*(19*n^2 - 47*n + 24)*a(n-3).
a(n) ~ (1 - (1-s)*s)^(n + 1/2) / (2*sqrt(Pi*(3 - 6*s + s^2)) * n^(3/2) * s^n * (1-s)^(2*n-2)), where s = 0.3611030805286473776346465621590281395264149... is the real root of the equation (s^2 - s + 3)*s = 1. (End)

A219537 G.f. satisfies A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 3, 13, 66, 366, 2148, 13115, 82449, 530095, 3469401, 23037642, 154820262, 1050999343, 7196493255, 49644745965, 344704716018, 2407157839593, 16895247295947, 119121868831235, 843306880720218, 5992060655349521, 42718501097385207, 305476181765843358
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2012

Keywords

Comments

a(n) is the number of noncrossing partial matchings on points 1, 2, ... , 3*n where point 1 is unmatched if n>0 and only points congruent modulo 3 can be matched. See Example 57 on p. 47 of the Burstein-Shapiro reference. - Alexander Burstein, Jun 03 2022

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 + 366*x^5 + 2148*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 167*x^4 + 942*x^5 + 5593*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 58*x^3 + 312*x^4 + 1794*x^5 + 10794*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 511*x^4 + 3000*x^5 + 18316*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 775*x^4 + 4651*x^5 + 28845*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 188*x^3 + 1116*x^4 + 6852*x^5 + 43204*x^6 +...
where A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4),
and A(x)^2 = 1 + x*(A(x)^2 + A(x)^5),
and A(x)^3 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^6),
and A(x)^4 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^5 + A(x)^7),
and A(x)^5 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^5 + A(x)^6 + A(x)^8), etc.
The g.f. satisfies A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2) where
F(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + 51*x^7 +...+ A001006(n-1)*x^n +...
is a g.f. of the Motzkin numbers (A001006, shifted right 1 place).
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 +...+ A106228(n)*x^n +...
satisfies G(x) = 1 + x*G(x)/(1 - x*G(x)^2).
		

Crossrefs

Programs

  • Maple
    rec := {(36*n^4+126*n^3+126*n^2+36*n)*a(n)+(-276*n^4-1548*n^3-3198*n^2-2898*n-972)*a(n+1)+(940*n^4+7090*n^3+19916*n^2+24650*n+11316)*a(n+2)+(-845*n^4-9000*n^3-34159*n^2-53004*n-26136)*a(n+3)+(-260*n^4-5200*n^3-37454*n^2-116538*n-133128)*a(n+4)+(459*n^4+9774*n^3+77955*n^2+276012*n+366060)*a(n+5)+(-54*n^4-1242*n^3-10686*n^2-40758*n-58140)*a(n+6), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 13, a(4) = 66, a(5) = 366}:
    f:= gfun:-rectoproc(rec,a(n),remember):
    map(f, [$0..50]); # Robert Israel, Feb 25 2018
  • Mathematica
    nmax = 23; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x (A[x]^2 - A[x]^3 + A[x]^4)) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
  • PARI
    /* Formula A(x) = 1 + x*(A(x)^2 - A(x)^3 + A(x)^4): */
    {a(n)=local(A=1);for(i=1,n,A=1+x*(A^2-A^3+A^4) +x*O(x^n));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    /* Formula using Series Reversion involving Motzkin numbers: */
    {a(n)=local(A=1);A=(1+x-sqrt(1-2*x-3*x^2+x^3*O(x^n)))/(2*x); polcoeff(sqrt(1/x*serreverse(x/A^2)), n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. A(x) satisfies [from Paul D. Hanna, Mar 21 2016]: (Start)
(1) A(x)^2 = 1 + x*(A(x)^2 + A(x)^5).
(2) A(x)^3 = 1 + x*(A(x)^2 + A(x)^4 + A(x)^6).
Let F(x) = (1+x - sqrt(1 - 2*x - 3*x^2)) / (2*x), then g.f. A(x) satisfies:
(3) A(x) = sqrt( (1/x)*Series_Reversion(x/F(x)^2) ),
(4) A(x) = F(x*A(x)^2) and F(x) = A(x/F(x)^2),
where F(x) = 1 + x*M(x) such that M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of the Motzkin numbers (A001006).
Let G(x) = 1 + x*G(x)/(1 - x*G(x)^2), then g.f. A(x) satisfies:
(5) A(x) = (1/x)*Series_Reversion(x/G(x)),
(6) A(x) = G(x*A(x)) and G(x) = A(x/G(x)).
where G(x) is the g.f. of A106228. (End)
Recurrence: 3*n*(3*n-1)*(3*n+1)*(5*n-11)*(5*n-8)*(5*n-6)*a(n) = 6*(5*n-11)*(900*n^5 - 3870*n^4 + 6033*n^3 - 4165*n^2 + 1238*n - 120)*a(n-1) - 2*(n-2)*(5*n-1)*(950*n^4 - 5510*n^3 + 11199*n^2 - 9207*n + 2430)*a(n-2) + 6*(n-3)*(n-2)*(2*n-5)*(5*n-6)*(5*n-3)*(5*n-1)*a(n-3). - Vaclav Kotesovec, Aug 19 2013
a(n) ~ sqrt(300+75*10^(2/3)+30*10^(1/3))/90 * (5/9*10^(2/3)+10/9*10^(1/3)+8/3)^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 19 2013
Recurrence: 18*n*(2*n+1)*(n+2)*(n+1)*a(n)-(6*(n+1))*(n+2)*(46*n^2+120*n+81)*a(n+1)+(2*(n+2))*(470*n^3+2605*n^2+4748*n+2829)*a(n+2)-(n+3)*(845*n^3+6465*n^2+14764*n+8712)*a(n+3)-(2*(n+4))*(130*n^3+2080*n^2+10407*n+16641)*a(n+4)+(3*(n+5))*(153*n^3+2493*n^2+13520*n+24404)*a(n+5)-(6*(n+5))*(3*n+17)*(3*n+19)*(n+6)*a(n+6) = 0. - Robert Israel, Feb 25 2018
G.f. A(x) satisfies: A(-x*A(x)^5) = 1/A(x). - Alexander Burstein, Jun 03 2022
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(2*n+k,n-1-k) for n > 0. - Seiichi Manyama, Aug 05 2023
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(4*n-2*k,n-1-k) for n > 0. - Seiichi Manyama, Aug 06 2023
G.f.: A(x) = sqrt(B(x)) where B(x) is the g.f. of A366400. - Seiichi Manyama, Mar 31 2024
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(3*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+3*k/2+1/2,n)/(2*n+3*k+1). - Seiichi Manyama, Apr 04 2024
G.f.: Sum_{k>=0} binomial(5*k/2 + 1/2, k)*x^k/((5*k + 1)*(1 - x)^((5*k + 1)/2)). - Miles Wilson, Feb 02 2025

A271469 G.f. satisfies A(x) = 1 + x*(A(x)^3 - A(x)^4 + A(x)^5).

Original entry on oeis.org

1, 1, 4, 23, 155, 1142, 8910, 72350, 605056, 5175866, 45077560, 398348733, 3562916317, 32192775763, 293410452560, 2694283228653, 24902681767987, 231496130358758, 2162985033344112, 20301976721356134, 191336242071696514, 1809916398759630481, 17178063381786563194, 163536967014934201972, 1561247114394683682834, 14943175106109268856975
Offset: 0

Views

Author

Paul D. Hanna, Apr 08 2016

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 155*x^4 + 1142*x^5 + 8910*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 9*x^2 + 54*x^3 + 372*x^4 + 2778*x^5 + 21873*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 94*x^3 + 663*x^4 + 5025*x^5 + 39970*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 144*x^3 + 1041*x^4 + 8016*x^5 + 64470*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 205*x^3 + 1520*x^4 + 11901*x^5 + 96850*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 278*x^3 + 2115*x^4 + 16848*x^5 + 138816*x^6 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 364*x^3 + 2842*x^4 + 23044*x^5 + 192325*x^6 +...
where A(x) = 1 + x*(A(x)^3 - A(x)^4 + A(x)^5),
and A(x)^2 = 1 + x*(A(x)^3 + A(x)^6),
and A(x)^3 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^7),
and A(x)^4 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^6 + A(x)^8),
and A(x)^5 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^6 + A(x)^7 + A(x)^9), etc.
The g.f. satisfies A(x) = F(x*A(x)^3) and F(x) = A(x/F(x)^3) where
F(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + 51*x^7 +...+ A001006(n-1)*x^n +...
is a g.f. of the Motzkin numbers (A001006, shifted right 1 place).
The g.f. satisfies A(x) = G(x*A(x)) and G(x) = A(x/G(x)) where
G(x) = 1 + x + 3*x^2 + 13*x^3 + 66*x^4 + 366*x^5 + 2148*x^6 +...+ A219537(n)*x^n +...
satisfies G(x) = 1 + x*(G(x)^2 - G(x)^3 + G(x)^4).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[(1/x*InverseSeries[Series[8*x^4/(1 + x - Sqrt[1 - 2*x - 3*x^2])^3, {x, 0, 20}], x])^(1/3), x] (* Vaclav Kotesovec, Apr 16 2016 *)
  • PARI
    /* Formula A(x) = 1 + x*(A(x)^3 - A(x)^4 + A(x)^5): */
    {a(n)=local(A=1); for(i=1, n, A=1+x*(A^3-A^4+A^5) +x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* Formula using Series Reversion involving Motzkin numbers: */
    {a(n)=local(A=1); A=(1+x-sqrt(1-2*x-3*x^2+x^3*O(x^n)))/(2*x); polcoeff( (1/x*serreverse(x/A^3))^(1/3), n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x*(A(x)^3 + A(x)^6).
(2) A(x)^3 = 1 + x*(A(x)^3 + A(x)^5 + A(x)^7).
Let F(x) = (1+x - sqrt(1 - 2*x - 3*x^2)) / (2*x), then g.f. A(x) satisfies:
(3) A(x) = ( (1/x)*Series_Reversion(x/F(x)^3) )^(1/3),
(4) A(x) = F(x*A(x)^3) and F(x) = A(x/F(x)^3),
where F(x) = 1 + x*M(x) such that M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of the Motzkin numbers (A001006).
Let G(x) = 1 + x*(G(x)^2 - G(x)^3 + G(x)^4), then g.f. A(x) satisfies:
(5) A(x) = (1/x)*Series_Reversion(x/G(x)),
(6) A(x) = G(x*A(x)) and G(x) = A(x/G(x)),
where G(x) is the g.f. of A219537.
a(n) ~ sqrt((34 + (34102 - 8262*sqrt(17))^(1/3) + (34102 + 8262*sqrt(17))^(1/3)) / 1632) * ((28 + (513243 - 4131*sqrt(17))^(1/3)/3 + (19009 + 153*sqrt(17))^(1/3)) / 8)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Apr 16 2016
D-finite recurrence: 8*n*(2*n-1)*(4*n-1)*(4*n+1)*(204*n^4 - 1341*n^3 + 3191*n^2 - 3286*n + 1242)*a(n) = 12*(45696*n^8 - 391776*n^7 + 1376164*n^6 - 2580579*n^5 + 2808064*n^4 - 1797694*n^3 + 651566*n^2 - 119476*n + 8160)*a(n-1) - 6*(n-2)*(29376*n^7 - 237168*n^6 + 760044*n^5 - 1236774*n^4 + 1082233*n^3 - 496791*n^2 + 108530*n - 8400)*a(n-2) + 9*(n-3)*(n-2)*(3*n-8)*(3*n-4)*(204*n^4 - 525*n^3 + 392*n^2 - 111*n + 10)*a(n-3). - Vaclav Kotesovec, Apr 16 2016
From Seiichi Manyama, Aug 06 2023: (Start)
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(3*n+k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(5*n-2*k,n-1-k) for n > 0. (End)
G.f.: A(x) = sqrt(B(x)) where B(x) is the g.f. of A370474. - Seiichi Manyama, Mar 31 2024
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(4*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(3*n/2+3*k/2+1/2,n)/(3*n+3*k+1). - Seiichi Manyama, Apr 04 2024

A082759 a(n) = Sum_{k = 0..n} binomial(n,k)*trinomial(n,k), where trinomial(n,k) = trinomial coefficients.

Original entry on oeis.org

1, 2, 8, 35, 160, 752, 3599, 17446, 85376, 420884, 2087008, 10398016, 52010479, 261021854, 1313707256, 6628095035, 33512880640, 169768235840, 861450392708, 4377796514152, 22277498220160, 113502759811000, 578931209245760, 2955873376166144, 15105883318474991
Offset: 0

Views

Author

Emanuele Munarini, May 21 2003

Keywords

Comments

Central coefficients of A115990. - Paul Barry, Feb 25 2011

Examples

			G.f. = 1 + 2*x + 8*x^2 + 35*x^3 + 160*x^4 + 752*x^5 + 3599*x^6 + 17446*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([-n, -n, n + 1], [1/2, 1], 1/4):
    seq(simplify(a(n)), n = 0..24);  # Peter Luschny, Jan 04 2025
  • Mathematica
    Table[Sum[Binomial[2 n - k, k] Binomial[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 24 2012; typo fixed by Vincenzo Librandi, May 07 2013 *)
  • PARI
    a(n)=sum(k=0,n,binomial(n+k,n-k)*binomial(n,k))

Formula

a(n) = Sum_{k = 0..n} C(n+k, n-k)*C(n, k). - Benoit Cloitre, Jun 20 2003
2*n*(2*n - 1)*(38*n - 53)*a(n) + ( - 760*n^3 + 1820*n^2 - 1252*n + 252)*a(n - 1) - 8*(n - 1)*(19*n^2 - 36*n + 9)*a(n - 2) - 3*(38*n - 15)*(n - 1)*(n - 2)*a(n - 3) = 0. - Vladeta Jovovic, Jul 15 2004
a(n) = Sum_{k = 0..n} C(2*n - k, k)*C(n, k). - Paul Barry, Jan 20 2005
a(n) ~ c * d^n / sqrt(Pi*n), where d = 5.21913624874158651... = (((1261 + 57*sqrt(57))^(2/3) + 112 + 10*(1261 + 57*sqrt(57))^(1/3))/(6*(1261 + 57*sqrt(57))^(1/3))) is the real root of the equation 4*d^3 - 20*d^2 - 4*d - 3 = 0 and c = 0.79036380822702870439029... = 1/114*sqrt(57)*sqrt((9747 + 57*sqrt(57))^(1/3)*(2*(9747 + 57*sqrt(57))^(2/3) + 912 + 57*(9747 + 57*sqrt(57))^(1/3)))/((9747 + 57*sqrt(57))^(1/3)) is the positive real root of the equation 1216*c^6 - 912*c^4 + 100*c^2 - 3 = 0. - Vaclav Kotesovec, Oct 24 2012 (updated Oct 16 2016, following a suggestion of Michael Somos)
G.f.: A(x) = x*B'(x)/B(x), where B(x) satisfies B(x) = x*(1 + 2*B(x) + 2*B(x)^2 + B(x)^3). - Vladimir Kruchinin, Jan 14 2015
a(n) = Sum_{k = 0..n} (-1)^k*C(n, k)*C(3*n - 2*k, n - k). - Peter Bala, Jul 13 2016
G.f. y = A(x) satisfies 0 = 1 + y*(3-2*x) + y^3*(-4+20*x+4*x^2+3*x^3). - Michael Somos, Oct 15 2016
From Peter Bala, Jan 09 2022: (Start)
a(n) = [x^n] (1 + 2*x + 2*x^2 + x^3)^n.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = hypergeom([-n, -n, n + 1], [1/2, 1], 1/4). - Peter Luschny, Jan 04 2025

A300048 G.f. A(x) satisfies A(x)^3 = 1 + x*A(x) + x*A(x)^2 + x*A(x)^6.

Original entry on oeis.org

1, 1, 2, 7, 29, 131, 627, 3124, 16032, 84162, 449828, 2439550, 13391105, 74256824, 415357737, 2340775363, 13278009018, 75753246286, 434392031856, 2502289328542, 14473290097526, 84023214062635, 489424396591995, 2859551104564120, 16754209625090980, 98415932763515679, 579475837597933632, 3419452319373566239, 20219028961691299994
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2018

Keywords

Comments

Compare to: G(x)^3 = 1 + x*G(x) + x*G(x)^2 + x*G(x)^3 holds when G(x) = 1/(1-x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 131*x^5 + 627*x^6 + 3124*x^7 + 16032*x^8 + 84162*x^9 + 449828*x^10 + 2439550*x^11 + 13391105*x^12 + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 18*x^3 + 76*x^4 + 348*x^5 + 1681*x^6 + 8432*x^7 + 43495*x^8 + 229260*x^9 + 1229371*x^10 + ...
A(x)^6 = 1 + 6*x + 27*x^2 + 122*x^3 + 579*x^4 + 2862*x^5 + 14588*x^6 + 76146*x^7 + 405039*x^8 + 2187756*x^9 + 11967426*x^10 + ...
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 147*x^4 + 684*x^5 + 3341*x^6 + 16896*x^7 + 87702*x^8 + 464566*x^9 + 2501178*x^10 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = (1 + x*A + x*A^2 + x*A^6 +x*O(x^n))^(1/3) ); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) ~ sqrt(1 + sqrt((9 + 40*sqrt(3))/13)) * (9 + 6*sqrt(3) + sqrt(153 + 100*sqrt(3)))^n / (sqrt(Pi) * n^(3/2) * 2^(n + 3/2) * 3^(n + 3/4)). - Vaclav Kotesovec, Aug 11 2021
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(n+2*k,n-1-k) for n > 0. - Seiichi Manyama, Aug 05 2023

A364765 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 - x*A(x)^5).

Original entry on oeis.org

1, 1, 5, 36, 304, 2808, 27475, 279845, 2935987, 31511097, 344344868, 3818320487, 42855633210, 485923475563, 5557803724920, 64046876264292, 742908320701832, 8667090253409215, 101631581618367133, 1197190915359577973, 14160413911721178800
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(4*n+k, n-1-k))/n);

Formula

G.f. satisfies A(x) = 1 + x*A(x)^6 / (1 + x*A(x)^4).
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n+k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(6*n-2*k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=0..floor((n-1)/2)} binomial(n,k) * binomial(5*n-k,n-1-2*k) for n > 0. - Seiichi Manyama, Apr 01 2024

A364759 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)).

Original entry on oeis.org

1, 1, 4, 25, 182, 1447, 12175, 106575, 960579, 8854622, 83089537, 791063172, 7622317663, 74191096721, 728389554533, 7204640725610, 71727367291455, 718195853746770, 7227785937663908, 73069500402699226, 741712341691454837, 7556704348506425398
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(5*n-4*k, n-1-k))/n);

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(5*n-4*k,n-1-k) for n > 0.

A336708 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-1)^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, -1, 2, 1, 1, 2, 1, 0, -3, 1, 1, 3, 6, 1, 2, -1, 1, 1, 4, 14, 21, 1, 0, 11, 1, 1, 5, 25, 76, 80, 1, -5, -15, 1, 1, 6, 39, 182, 450, 322, 1, 0, -13, 1, 1, 7, 56, 355, 1447, 2818, 1347, 1, 14, 77, 1, 1, 8, 76, 611, 3532, 12175, 18352, 5798, 1, 0, -86
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Examples

			Square array begins:
   1,  1, 1,   1,    1,     1,     1, ...
   1,  1, 1,   1,    1,     1,     1, ...
  -1,  0, 1,   2,    3,     4,     5, ...
   0, -1, 1,   6,   14,    25,    39, ...
   2,  0, 1,  21,   76,   182,   355, ...
  -3,  2, 1,  80,  450,  1447,  3532, ...
  -1,  0, 1, 322, 2818, 12175, 37206, ...
		

Crossrefs

Columns k=0-3 give: A007440, A090192, A000012, A106228.
Main diagonal gives A336713.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {T(n, k) = if(n==0, 1, sum(j=1, n, (-1)^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
    
  • PARI
    {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1+x*A)); polcoef(A, n)}

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k / (1 + x * A_k(x)).

Extensions

Typo in name corrected by Georg Fischer, Sep 19 2023

A364758 G.f. A(x) satisfies A(x) = 1 + x*A(x)^4 / (1 + x*A(x)).

Original entry on oeis.org

1, 1, 3, 14, 76, 450, 2818, 18352, 123028, 843345, 5884227, 41650479, 298352365, 2158751879, 15754446893, 115830820439, 857147952469, 6379136387303, 47715901304501, 358529599468636, 2704884469806606, 20481615947325089, 155605509972859999, 1185779099027494848
Offset: 0

Views

Author

Seiichi Manyama, Aug 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(4*n-3*k, n-1-k))/n);
    
  • PARI
    a(n, r=1, s=-1, t=4, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 11 2024

Formula

a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(4*n-3*k,n-1-k) for n > 0.
From Seiichi Manyama, Dec 11 2024: (Start)
G.f. A(x) satisfies A(x)^3 = 1 + x*A(x) + x*A(x)^5 + x*A(x)^6.
G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^3/(1 + x*A(x))).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)

A370472 G.f. satisfies A(x) = 1 + x * A(x) * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 3, 15, 88, 565, 3844, 27228, 198670, 1482981, 11271117, 86926262, 678568982, 5351340410, 42570335161, 341201704970, 2752693408051, 22335989938093, 182166978172055, 1492496248447713, 12278191839580716, 101382009468089580, 839932374157895727
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n/2+5*k/2+1/2, n)/(n+5*k+1));

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x * A(x) * (1 + A(x)^5).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A370471.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+5*k/2+1/2,n)/(n+5*k+1).
Showing 1-10 of 38 results. Next