cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A106228 G.f. satisfies A(x) = 1 + x*A(x)/(1 - x*A(x)^2).

Original entry on oeis.org

1, 1, 2, 6, 21, 80, 322, 1347, 5798, 25512, 114236, 518848, 2384538, 11068567, 51817118, 244370806, 1159883685, 5536508864, 26560581688, 127993221140, 619280193640, 3007251366000, 14651743202152, 71601107803904, 350873710447210, 1723795243004223
Offset: 0

Views

Author

Paul D. Hanna, May 19 2005

Keywords

Comments

Number of paths from (0,0) to (3n-3,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1) and have no tripledescents (ddd). Example: a(3)=6 because we have udud, Uddud, udUdd, UddUdd, uudd and Ududd (the remaining four paths contain the string ddd: uUddd, UdUddd, Uuddd and UUdddd; see A027307). - Emeric Deutsch, Jun 08 2005
a(n) = number of node-labeled ordered trees (A000108) on n vertices, each node labeled with a positive integer <= its outdegree. A node is a non-root non-leaf vertex. Example. a(3)=6 counts the 5 ordered trees on 4 vertices with all labels 1 and the tree
.|.
/ \
with its (one and only) node labeled 2. - David Callan, Jul 14 2006
a(n) = number of Schroeder (n-1)-paths with no triple descents. Example: a(4)=21 counts all 22 Schroeder 3-paths (A006318) except UUUDDD. - David Callan, Jul 14 2006
(1 + 2x + 6x^2 + ...)*(1 + x + 2x^2 + 6x^3) = (1 + 3x + 10x^2 + 37x^3 + ...), where A109081 = (1, 1, 3, 10, 37, ...). - Gary W. Adamson, Nov 15 2011
a(n) = number of Motzkin paths of length 2n-1 with no downsteps in odd position. Example: a(3)=6 counts FFFFF, FFUDF, FUFDF, UDFFF, UDUDF, UFFDF with U an upstep (1,1), F a flatstep (1,0), and D a downstep (1,-1). - David Callan, May 20 2015
Number of permutations of length n that avoid 4123, 4132, and 4213. - Jay Pantone, Oct 01 2015
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j) and e(i) <= e(k). [Martinez and Savage, 2.21] - Eric M. Schmidt, Jul 17 2017
a(n) is the number of permutations of length n avoiding the partially ordered pattern (POP) {1>3, 1>4, 4>2} of length 4. That is, the number of length n permutations having no subsequences of length 4 in which the first element is the largest and the fourth element is larger than the second element. - Sergey Kitaev, Dec 10 2020
a(n) is the number of peakless Motzkin paths of length 2n that do not start with an up edge and where every pair of matching up and down edges occupies positions of the same parity. Equivalently, the number of RNA secondary structures on 2n vertices where the leftmost vertex is not matched and only vertices of the same parity can be matched. - Alexander Burstein, May 17 2021

Examples

			A = 1 + x*A + x^2*A^3 + x^3*A^5 + x^4*A^7 + x^5*A^9 + ...
a(4) = 21 since the top row terms of Q^3 = (10, 7, 3, 1). - _Gary W. Adamson_, Nov 15 2011
G.f. = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 80*x^5 + 322*x^6 + 1347*x^7 + ...
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n<2 then 1 elif n=2 then 2 else ((380*n^3-840*n^2+496*n-72)*a(n-1)+(76*n^3-282*n^2+302*n-84)*a(n-2)+(57*n^3-297*n^2+402*n-72)*a(n-3))/(76*n^3-54*n^2-46*n) fi end: seq(a(i),i=0..23); # Peter Luschny, Aug 03 2012
  • Mathematica
    Flatten[{1,Table[1/n*Sum[Binomial[n,k]*Binomial[n+k,n-k-1],{k,0,n-1}],{n,1,20}]}] (* Vaclav Kotesovec, Sep 16 2013 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[{-n, 1 - n, n + 1}, {1, 3/2}, 1/4]]; (* Michael Somos, May 27 2014 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(k=1,n,A=1+x*A/(1-x*A^2)); polcoeff(A,n)}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = (1 + x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n))) / 2; polcoeff( serreverse( x^2 / A), n))}; /* Michael Somos, Jun 18 2005 */
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x /  (1 + 2*x + 2*x^2 + x^3) + x * O(x^n)), n))}; /* Michael Somos, Dec 31 2014 */
  • Sage
    from mpmath import mp
    mp.dps = 32; mp.pretty = True
    def A106228(n) : return int(mp.hyper([-n, 1-n, n+1], [1, 3/2], 1/4))
    [A106228(n) for n in (0..23)] # Peter Luschny, Aug 02 2012
    

Formula

G.f.: A(x) = (1/x)*series_reversion[x/(1 + x*G001006(x))] and thus G.f. satisfies: A(x) = 1 + x*A(x)*G001006(x*A(x)) where G001006(x) is the g.f. of Motzkin numbers A001006.
G.f.: 1 + x*exp( Sum_{n>=1} A082759(n)*x^n/n ), where A082759(n) = Sum_{k=0..n} binomial(n,k)*trinomial(n,k). - Paul D. Hanna, Nov 02 2012
a(n) = (1/n)sum(binomial(n, j+1)*b(n, j), j=0..n-1), where b(n, j) are the trinomial coefficients [b(n, j)=A027907(n, j)=coefficient of x^j in (1+x+x^2)^n]. - Emeric Deutsch, Jun 08 2005
Given g.f. A(x), then B(x) = x*A(x) satisfies 0 = f(x, B(x)) where f(x, y) = y^3 - (1+y)*x*(y-x). - Michael Somos, Jun 18 2005
a(n+1) = Sum[binomial(2n-2k,n-k)*binomial(n+k,n)/(n+1),{k,0,n}]. - David Callan, Aug 16 2006
For n>0: a(n) = 1/n*sum(binomial(n,j)*sum(binomial(j,i)*binomial(n-j,2*j-n-i-1)*2^(2*n-3*j+2*i+1),i=0..n-1), j=0..n); - Vladimir Kruchinin, Dec 26 2010
a(n) = 1/(n+1)*sum(binomial(n+1,k)*binomial(n+k+1,n-k),k,0,n); - Vladimir Kruchinin, Feb 28 2010
a(n) = upper left term in M^n, M = the production matrix:
1, 1
1, 1, 1
2, 2, 1, 1
3, 3, 2, 1, 1
4, 4, 3, 2, 1, 1
5, 5, 4, 3, 2, 1, 1
...
- Gary W. Adamson, Jul 08 2011
D-finite with recurrence: 4*n*(2*n+1)*a(n) + 2*(6-5*n-10*n^2)*a(n-1) + 12*(-9*n^2+35*n-33)*a(n-2) - 2*(n-3)*(13*n-28)*a(n-3) - 15*(n-3)*(n-4)*a(n-4) = 0. - R. J. Mathar, Nov 14 2011
From Gary W. Adamson, Nov 15 2011: (Start)
a(n) is the sum of top row terms of Q^(n-1), where Q = the following infinite square production matrix:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 2, 1, 1, 0, ...
4, 3, 2, 1, 1, ...
5, 4, 3, 2, 1, ...
... (End)
a(n) = 3_F_2([-n, 1-n, n+1], [1, 3/2], 1/4). - Peter Luschny, Aug 02 2012
A four-term recurrence equation is given in the Maple program. Peter Luschny, Aug 03 2012
a(n) ~ 1/228*sqrt(114)*sqrt((32129+3933*sqrt(57))^(1/3) * ((32129+3933*sqrt(57))^(2/3) + 532 + 38*(32129+3933*sqrt(57))^(1/3))) / ((32129+3933*sqrt(57))^(1/3)) * (((1261+57*sqrt(57))^(2/3) + 112 + 10*(1261+57*sqrt(57))^(1/3)) / (6*(1261+57*sqrt(57))^(1/3)))^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
G.f. satisfies x*F(x)^3 - x*F(x)^2 + (x-1)*F(x) + 1 = 0. - Jay Pantone, Oct 01 2015
G.f. satisfies A(-x*A(x)^3) = 1/A(x). - Alexander Burstein, Dec 05 2019
G.f.: A(x) = sqrt(B(x)) where B(x) is the g.f. of A262441. - Seiichi Manyama, Mar 31 2024
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n/2+3*k/2+1/2,n)/(n+3*k+1). - Seiichi Manyama, Apr 04 2024

A262441 a(n) = Sum_{k=0..n+1}(binomial(n-1,k)/(k+1)*binomial(n+k+1,n-k)).

Original entry on oeis.org

1, 2, 5, 16, 58, 226, 924, 3910, 16979, 75232, 338776, 1545886, 7132580, 33219086, 155963851, 737383488, 3507680650, 16776206680, 80622416976, 389123999656, 1885405316596, 9167409871040, 44717351734160, 218762640192838, 1073082055680180
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 23 2015

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1, k)/(k+1)*Binomial(n+k+1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
    
  • Mathematica
    Join[{1}, Table[Sum[ Binomial[n-1, k] / (k+1) Binomial[ n+k+1, n-k], {k, 0, n+1}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • Maxima
    a(n):=sum(binomial(n,k)*binomial(n+k-2,n-k-1),k,0,n-1)/n;
    A(x):=sum(a(n)*x^n,n,1,30);
    taylor((1/x-1/A(x)),x,0,10);
    
  • PARI
    a(n)=sum(k=0,n+1,(binomial(n-1,k)/(k+1)*binomial(n+k+1,n-k))) \\ Anders Hellström, Sep 23 2015

Formula

G.f.: 1/x-1/A(x), where A(x) is g.f. of A109081.
Recurrence: 2*(n+1)*(2*n - 1)*(19*n - 30)*a(n) = 20*(19*n^3 - 49*n^2 + 34*n - 6)*a(n-1) + 2*(n-2)*(38*n^2 - 79*n + 15)*a(n-2) + 3*(n-3)*(n-2)*(19*n - 11)*a(n-3). - Vaclav Kotesovec, Sep 23 2015
a(n) = (n + 1)*hypergeom([1 - n, -n, n + 2], [3/2, 2], 1/4). - Peter Luschny, Mar 07 2022

A161797 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^3).

Original entry on oeis.org

1, 1, 4, 16, 71, 336, 1660, 8464, 44207, 235306, 1271807, 6961307, 38508659, 214950425, 1209170536, 6848080767, 39014400171, 223439516338, 1285660965508, 7428738358924, 43087099589998, 250766507928988, 1464026402082801
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]/(n-k+1) * Binomial[n+2*k-1,n-k], {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Nov 18 2017 *)
  • PARI
    {a(n,m=1)=sum(k=0,n,binomial(n+m-1,k)*m/(n-k+m)*binomial(n+2*k-1,n-k))}

Formula

a(n) = Sum_{k=0..n} C(n,k)/(n-k+1) * C(n+2*k-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n then
a(n,m) = Sum_{k=0..n} C(n+m-1,k)*m/(n-k+m) * C(n+2*k-1,n-k).
G.f.: A(x) = (1/x)*serreverse[x/(1 + x/(1 - x)^3)].
Recurrence: 3*(n+1)*(3*n - 2)*(3*n + 2)*(2145*n^4 - 14355*n^3 + 33844*n^2 - 32668*n + 10380)*a(n) = 3*(115830*n^7 - 833085*n^6 + 2195691*n^5 - 2521863*n^4 + 998671*n^3 + 259048*n^2 - 263292*n + 41520)*a(n-1) + 3*(n-2)*(19305*n^6 - 129195*n^5 + 315651*n^4 - 367201*n^3 + 219176*n^2 - 66584*n + 7608)*a(n-2) + 3*(n-3)*(n-2)*(64350*n^5 - 334125*n^4 + 546005*n^3 - 255608*n^2 - 71320*n + 54328)*a(n-3) - 23*(n-4)*(n-3)*(n-2)*(2145*n^4 - 5775*n^3 + 3649*n^2 + 535*n - 654)*a(n-4). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ sqrt(sqrt((159 + 100*sqrt(3))/13) - 2 - 5/sqrt(3)) * (3 + 2*sqrt(3) + sqrt(153 + 100*sqrt(3))/3)^(n+1) / (sqrt(Pi) * n^(3/2) * 2^(n + 5/2)). - Vaclav Kotesovec, Nov 18 2017

A321798 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^4).

Original entry on oeis.org

1, 1, 5, 23, 117, 636, 3607, 21106, 126489, 772468, 4789844, 30075937, 190851839, 1222000222, 7885041530, 51222338580, 334720178969, 2198755865424, 14511029102232, 96169424666028, 639757737711300, 4270520564506069, 28595671605541357, 192025292117465445, 1292866976587651519
Offset: 0

Views

Author

Ludovic Schwob, Nov 19 2018

Keywords

Crossrefs

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)/(n-k+1)*Binomial(n+3*k-1,n-k))); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    a[n_] := Sum[Binomial[n, k] * Binomial[n + 3k - 1, n - k]/(n - k + 1), {k, 0,
    n}]; Array[a, 20, 0] (* Amiram Eldar, Nov 19 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(n+3*k-1, n-k)/(n-k+1)); \\ Michel Marcus, Nov 19 2018
    

Formula

a(n) = Sum_{k=0..n} (C(n,k)/(n-k+1)) * C(n+3*k-1,n-k).
a(n) ~ sqrt((1 - r*s)*(1 + 3*r*s)/(8*Pi*(8*s - 3))) / (n^(3/2) * r^(n+1)), where r = 0.139684805934917057093949761392656080860096066578... and s = 1.76437708701490464570032194388560298744432681226... are real roots of the system of equations s*(1 - r/(1 - r*s)^4) = 1, 4*r^2*s^2 = (1 - r*s)^5. - Vaclav Kotesovec, Nov 21 2018

A365770 Expansion of g.f. A(x,y) satisfying A(x,y) = 1 + x*A(x,y)/(1 - x*y * A(x,y))^2, as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 20, 4, 0, 1, 20, 70, 50, 5, 0, 1, 30, 180, 280, 105, 6, 0, 1, 42, 385, 1050, 882, 196, 7, 0, 1, 56, 728, 3080, 4620, 2352, 336, 8, 0, 1, 72, 1260, 7644, 18018, 16632, 5544, 540, 9, 0, 1, 90, 2040, 16800, 57330, 84084, 51480, 11880, 825, 10, 0, 1, 110, 3135, 33660, 157080, 336336, 330330, 141570, 23595, 1210, 11, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2023

Keywords

Comments

A365771(n) = T(2*n,n), the central terms.
A109081(n) = Sum_{k=0..n} T(n,k), the row sums.
A365772(n) = Sum_{k=0..n} T(n,k) * 2^k.
A365773(n) = Sum_{k=0..n} T(n,k) * 3^k.
A365774(n) = Sum_{k=0..n} T(n,k) * 4^k.
A365775(n) = Sum_{k=0..n} T(n,k) * 5^k.
Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x,y) = 1 + x + (1 + 2*y)*x^2 + (1 + 6*y + 3*y^2)*x^3 + (1 + 12*y + 20*y^2 + 4*y^3)*x^4 + (1 + 20*y + 70*y^2 + 50*y^3 + 5*y^4)*x^5 + (1 + 30*y + 180*y^2 + 280*y^3 + 105*y^4 + 6*y^5)*x^6 + (1 + 42*y + 385*y^2 + 1050*y^3 + 882*y^4 + 196*y^5 + 7*y^6)*x^7 + (1 + 56*y + 728*y^2 + 3080*y^3 + 4620*y^4 + 2352*y^5 + 336*y^6 + 8*y^7)*x^8 + ...
where
A(x,y) = 1 + x*A(x,y)/(1 - x*y*A(x,y))^2.
Also,
A(x,y) = 1 + 1^0*x*A(x,y)/(1 + (1-y)*x*A(x,y))^2 + 2^1*x^2*A(x,y)^2/(1 + (2-y)*x*A(x,y))^3 + 3^2*x^3*A(x,y)^3/(1 + (3-y)*x*A(x,y))^4 + 4^3*x^4*A(x,y)^4/(1 + (4-y)*x*A(x,y))^5 + 5^4*x^5*A(x,y)^5/(1 + (5-y)*x*A(x,y))^6 + ...
and
A(x,y) = 1 + (1+y)*1*(1+y)^(-1)*x*A(x,y)/(1 + 1*x*A(x,y))^2 + (1+y)*2*(2+y)^0*x^2*A(x,y)^2/(1 + 2*x*A(x,y))^3 + (1+y)*3*(3+y)^1*x^3*A(x,y)^3/(1 + 3*x*A(x,y))^4 + (1+y)*4*(4+y)^2*x^4*A(x,y)^4/(1 + 4*x*A(x,y))^5 + ...
This triangle of coefficients of x^n*y^k in A(x,y) begins:
1;
1, 0;
1, 2, 0;
1, 6, 3, 0;
1, 12, 20, 4, 0;
1, 20, 70, 50, 5, 0;
1, 30, 180, 280, 105, 6, 0;
1, 42, 385, 1050, 882, 196, 7, 0;
1, 56, 728, 3080, 4620, 2352, 336, 8, 0;
1, 72, 1260, 7644, 18018, 16632, 5544, 540, 9, 0;
1, 90, 2040, 16800, 57330, 84084, 51480, 11880, 825, 10, 0; ...
		

Crossrefs

Cf. A109081 (y=1), A365772 (y=2), A365773 (y=3), A365774 (y=4), A365775 (y=5).
Cf. A365771 (central terms).

Programs

  • PARI
    {T(n,k) = binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k)}
    for(n=0,10, for(k=0,n, print1(T(n,k),", "));print(""))

Formula

T(n,k) = binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k).
G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k satisfies the following formulas.
(1) A(x,y) = 1 + x*A(x,y)/(1 - x*y*A(x,y))^2.
(2) A(x,y) = (1/x) * Series_Reversion( x/(1 + x/(1 - x*y)^2) ), where reversion is taken wrt x.
(3) A( x/(1 + x/(1 - x*y)^2), y) = 1 + x/(1 - x*y)^2.
(4) A(x,y) = 1 + (1+y) * Sum{n>=1} n*(n+y)^(n-2) * x^n * A(x,y)^n / (1 + n*x*A(x,y))^(n+1).
(5) A(x,y) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x,y)^n / (1 + (n+m-y)*x*A(x,y))^(n+1) for all fixed nonnegative m.
(5.a) A(x,y) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x,y)^n / (1 + (n-y)*x*A(x,y))^(n+1).
(5.b) A(x,y) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x,y)^n / (1 + (n+1-y)*x*A(x,y))^(n+1).
(5.c) A(x,y) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x,y)^n / (1 + (n+2-y)*x*A(x,y))^(n+1).
(5.d) A(x,y) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x,y)^n / (1 + (n+3-y)*x*A(x,y))^(n+1).

A163810 Expansion of (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) in powers of x.

Original entry on oeis.org

1, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, 0, 1, 1, 0, -1, -1
Offset: 0

Views

Author

Michael Somos, Nov 07 2007

Keywords

Examples

			G.f. = 1 - x - x^2 + x^4 + x^5 - x^7 - x^8 + x^10 + x^11 - x^13 - x^14 + ...
		

Crossrefs

A163806(n) = -a(n) unless n=0. A106510(n) = (-1)^n * a(n).
Convolution inverse of A028310. Series reversion of A109081.

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{1, -1},{-1, -1},104]] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    {a(n) = (n==0) + [0, -1, -1, 0, 1, 1][n%6 + 1]};
    
  • PARI
    {a(n) = (n==0) + (-1)^n * kronecker(-3, n)};

Formula

Euler transform of length 6 sequence [ -1, -1, -1, 0, 0, 1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 2 * u * (1 - u) * (2 - v) - (v - u^2).
a(3*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 2) = -1, a(6*n + 4) = a(6*n + 5) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+3) = -a(n) unless n=0 or n=-3.
G.f.: (1 - x)^2 / (1 - x + x^2).

A365772 Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 2*x*A(x))^2.

Original entry on oeis.org

1, 1, 5, 25, 137, 801, 4893, 30857, 199377, 1313089, 8782389, 59491257, 407308377, 2814044897, 19594237133, 137364464681, 968743846561, 6868059398273, 48921561805413, 349942779608153, 2512722402972457, 18104571857859233, 130856263145140861, 948520413875412681
Offset: 0

Views

Author

Paul D. Hanna, Oct 04 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 25*x^3 + 137*x^4 + 801*x^5 + 4893*x^6 + 30857*x^7 + 199377*x^8 + 1313089*x^9 + 8782389*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 2*x*A(x))^2
also
A(x) = 1 + x*A(x)/(1 + (-1)*x*A(x))^2 + 2*x^2*A(x)^2/(1 + 0*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + 1*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + 2*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 3*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 4*x*A(x))^7 + ...
and
A(x) = 1 + 3*1*3^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 3*2*4^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 3*3*5^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 3*4*6^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 3*5*7^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1 + x*A[x]/(1 - 2*x*A[x])^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 05 2023 *)
  • PARI
    {a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 2^k)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 2*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) = Sum{k=0..n} binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 2^k.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n then a(n,m) = Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * binomial(2*n-k-1, k) * 2^k.
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)/(1 - 2*x*A(x))^2.
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x/(1 - 2*x)^2) ).
(3) A( x/(1 + x/(1 - 2*x)^2) ) = 1 + x/(1 - 2*x)^2.
(4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x)^n / (1 + (n+m-2)*x*A(x))^(n+1) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x)^n / (1 + (n-2)*x*A(x))^(n+1).
(4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x)^n / (1 + (n-1)*x*A(x))^(n+1).
(4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x)^n / (1 + n*x*A(x))^(n+1).
(4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x)^n / (1 + (n+1)*x*A(x))^(n+1).
a(n) ~ 7^(n + 3/2) * sqrt(3/((-1916 + (1833997600 - 95194848*sqrt(69))^(1/3) + 2^(5/3)*(57312425 + 2974839*sqrt(69))^(1/3))*Pi)) / (2 * n^(3/2) * (1 - 53*(2/(3*(-45 + 161*sqrt(69))))^(1/3) + ((-45 + 161*sqrt(69))/2)^(1/3)/3^(2/3))^n). - Vaclav Kotesovec, Oct 05 2023

A365773 Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 3*x*A(x))^2.

Original entry on oeis.org

1, 1, 7, 46, 325, 2446, 19234, 156115, 1298077, 11000584, 94668508, 825087418, 7267943962, 64602794647, 578726742481, 5219620390558, 47357456920165, 431941341136552, 3958215409319608, 36425213089790932, 336475535026075180, 3118885520601252016, 29000562051786329512
Offset: 0

Views

Author

Paul D. Hanna, Oct 04 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 46*x^3 + 325*x^4 + 2446*x^5 + 19234*x^6 + 156115*x^7 + 1298077*x^8 + 11000584*x^9 + 94668508*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 3*x*A(x))^2
also
A(x) = 1 + 1^0*x^1*A(x)^1/(1 + (-2)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-1)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + 0*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + 1*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 2*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 3*x*A(x))^7 + ...
and
A(x) = 1 + 4*1*4^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 4*2*5^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 4*3*6^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 4*4*7^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 4*5*8^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 3^k)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 3*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) = Sum{k=0..n} binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 3^k.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n then a(n,m) = Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * binomial(2*n-k-1, k) * 3^k.
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)/(1 - 3*x*A(x))^2.
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x/(1 - 3*x)^2) ).
(3) A( x/(1 + x/(1 - 3*x)^2) ) = 1 + x/(1 - 3*x)^2.
(4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x)^n / (1 + (n+m-3)*x*A(x))^(n+1) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x)^n / (1 + (n-3)*x*A(x))^(n+1).
(4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x)^n / (1 + (n-2)*x*A(x))^(n+1).
(4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x)^n / (1 + (n-1)*x*A(x))^(n+1).
(4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x)^n / (1 + n*x*A(x))^(n+1).
(4.e) A(x) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n * A(x)^n / (1 + (n+1)*x*A(x))^(n+1).
a(n) ~ 3^(1 + 3*n) * 11^(3/2 + n) / (2*sqrt((65 - 288/(1031 + 121*sqrt(73))^(1/3) + 16*(1031 + 121*sqrt(73))^(1/3)) * Pi) * n^(3/2) * (52 - (5182*2^(2/3)) / (-174721 + 65043*sqrt(73))^(1/3) + (2*(-174721 + 65043*sqrt(73)))^(1/3))^(n + 1/2)). - Vaclav Kotesovec, Nov 16 2023

A365774 Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 4*x*A(x))^2.

Original entry on oeis.org

1, 1, 9, 73, 625, 5681, 53945, 528697, 5307489, 54298849, 564079337, 5934390441, 63098046929, 676976915473, 7319925023897, 79684985945753, 872620958369473, 9606337027601345, 106249046704511945, 1180096759408431881, 13156993620315230001, 147193406523115480049
Offset: 0

Views

Author

Paul D. Hanna, Oct 04 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x) = 1 + x + 9*x^2 + 73*x^3 + 625*x^4 + 5681*x^5 + 53945*x^6 + 528697*x^7 + 5307489*x^8 + 54298849*x^9 + 564079337*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 4*x*A(x))^2
also
A(x) = 1 + 1^0*x*A(x)/(1 + (-3)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-2)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + (-1)*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + 0*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 1*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 2*x*A(x))^7 + ...
and
A(x) = 1 + 5*1*5^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 5*2*6^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 5*3*7^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 5*4*8^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 5*5*9^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 4^k)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 4*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) = Sum{k=0..n} binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 4^k.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n then a(n,m) = Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * binomial(2*n-k-1, k) * 4^k.
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)/(1 - 4*x*A(x))^2.
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x/(1 - 4*x)^2) ).
(3) A( x/(1 + x/(1 - 4*x)^2) ) = 1 + x/(1 - 4*x)^2.
(4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x)^n / (1 + (n+m-4)*x*A(x))^(n+1) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x)^n / (1 + (n-4)*x*A(x))^(n+1).
(4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x)^n / (1 + (n-3)*x*A(x))^(n+1).
(4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x)^n / (1 + (n-2)*x*A(x))^(n+1).
(4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x)^n / (1 + (n-1)*x*A(x))^(n+1).
(4.e) A(x) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n * A(x)^n / (1 + n*x*A(x))^(n+1).

A365775 Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2.

Original entry on oeis.org

1, 1, 11, 106, 1061, 11226, 124026, 1414211, 16515981, 196551736, 2375042076, 29062573926, 359407971786, 4484868410231, 56399986492661, 714067825064426, 9094408567049701, 116436367409647736, 1497734068943432856, 19346547929074098836, 250851388061224003276
Offset: 0

Views

Author

Paul D. Hanna, Oct 04 2023

Keywords

Comments

Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x) = 1 + x + 11*x^2 + 106*x^3 + 1061*x^4 + 11226*x^5 + 124026*x^6 + 1414211*x^7 + 16515981*x^8 + 196551736*x^9 + 2375042076*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2
also
A(x) = 1 + 1^0*x*A(x)/(1 + (-4)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-3)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + (-2)*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + (-1)*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 0*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 1*x*A(x))^7 + ...
and
A(x) = 1 + 6*1*6^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 6*2*7^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 6*3*8^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 6*4*9^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 6*5*10^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 5^k)}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 5*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

a(n) = Sum{k=0..n} binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 5^k.
Let A(x)^m = Sum_{n>=0} a(n,m) * x^n then a(n,m) = Sum_{k=0..n} binomial(n+m, n-k)*m/(n+m) * binomial(2*n-k-1, k) * 5^k.
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2.
(2) A(x) = (1/x) * Series_Reversion( x/(1 + x/(1 - 5*x)^2) ).
(3) A( x/(1 + x/(1 - 5*x)^2) ) = 1 + x/(1 - 5*x)^2.
(4) A(x) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x)^n / (1 + (n+m-5)*x*A(x))^(n+1) for all fixed nonnegative m.
(4.a) A(x) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x)^n / (1 + (n-5)*x*A(x))^(n+1).
(4.b) A(x) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x)^n / (1 + (n-4)*x*A(x))^(n+1).
(4.c) A(x) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x)^n / (1 + (n-3)*x*A(x))^(n+1).
(4.d) A(x) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x)^n / (1 + (n-2)*x*A(x))^(n+1).
(4.e) A(x) = 1 + 5 * Sum{n>=1} n*(n+4)^(n-2) * x^n * A(x)^n / (1 + (n-1)*x*A(x))^(n+1).
(4.f) A(x) = 1 + 6 * Sum{n>=1} n*(n+5)^(n-2) * x^n * A(x)^n / (1 + n*x*A(x))^(n+1).
a(n) ~ sqrt(3) * 5^(2*n) * (19^(3/2 + n) / (2*sqrt((113 + (28*(47225 + 1083*sqrt(1905))^(1/3))/5^(2/3) - 2632/(5*(47225 + 1083*sqrt(1905)))^(1/3))*Pi) * n^(3/2) * (68 + (2*(-1496331 + 60325*sqrt(1905)))^(1/3)/3^(2/3) - 9214*2^(2/3)/(3*(-1496331 + 60325*sqrt(1905)))^(1/3))^(n + 1/2))). - Vaclav Kotesovec, Oct 06 2023
Showing 1-10 of 24 results. Next