A001755
Lah numbers: a(n) = n! * binomial(n-1, 3)/4!.
Original entry on oeis.org
1, 20, 300, 4200, 58800, 846720, 12700800, 199584000, 3293136000, 57081024000, 1038874636800, 19833061248000, 396661224960000, 8299373322240000, 181400588328960000, 4135933413900288000, 98228418580131840000, 2426819753156198400000, 62288373664342425600000
Offset: 4
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=4 of unsigned triangle
A111596.
-
[Factorial(n-1)*Binomial(n, 4)/6: n in [4..30]]; // G. C. Greubel, May 10 2021
-
A001755 := n-> n!*binomial(n-1,3)/4!;
-
Table[n!Binomial[n-1, 3]/4!, {n, 4, 25}] (* T. D. Noe, Aug 10 2012 *)
-
[binomial(n,4)*factorial (n-1)/6 for n in range(4, 21)] # Zerinvary Lajos, Jul 07 2009
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 12 2001
A001777
Lah numbers: a(n) = n! * binomial(n-1, 4)/5!.
Original entry on oeis.org
1, 30, 630, 11760, 211680, 3810240, 69854400, 1317254400, 25686460800, 519437318400, 10908183686400, 237996734976000, 5394592659456000, 126980411830272000, 3101950060425216000, 78582734864105472000, 2062796790182768640000, 56059536297908183040000
Offset: 5
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=5 of unsigned triangle
A111596.
-
A001777 := n-> n!*binomial(n-1,4)/5!;
-
Table[n! Binomial[n - 1, 4]/5!, {n, 5, 20}] (* T. D. Noe, Aug 10 2012 *)
-
[binomial(n,5)*factorial (n-1)/factorial (4) for n in range(5, 21)] # Zerinvary Lajos, Jul 07 2009
More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
A187543
Binomial convolutions of the central Lah numbers (A187535).
Original entry on oeis.org
1, 4, 80, 2832, 144576, 9660480, 798468480, 78670609920, 9002061573120, 1173384611804160, 171641216823552000, 27843893955582566400, 4961007038613633638400, 963075987422089673932800, 202333751987206944654950400
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187544,
A187545,
A187546,
A187547,
A187548.
-
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(add(binomial(n,k)*a(k)*a(n-k), k=0..n),n=0..12);
-
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Binomial[n, k]a[k]a[n - k], {k, 0, n}], {n, 0, 20}]
CoefficientList[Series[(1/2 + EllipticK[16*x]/Pi)^2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 06 2019 *)
-
a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(binomial(n,k)*a(k)*a(n-k),k,0,n),n,0,12);
A187544
Stirling transform (of the second kind) of the central Lah numbers (A187535).
Original entry on oeis.org
1, 2, 38, 1310, 66254, 4428782, 368444078, 36691056110, 4256199137774, 563672814445742, 83921091641375918, 13875375391723852910, 2522552600160248918894, 500141581330626431059502, 107400097037199576065830958
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187545,
A187546,
A187547,
A187548.
-
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(sum(combinat[stirling2](n,k)*a(k), k=0..n),n=0..12);
-
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[StirlingS2[n, k]a[k], {k, 0, n}], {n, 0, 20}]
CoefficientList[Series[1/2 + EllipticK[16*(E^x - 1)]/Pi, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 06 2019 *)
-
a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(stirling2(n,k)*a(k),k,0,n),n,0,12);
A187545
Stirling transform (of the first kind) of the central Lah numbers (A187535).
Original entry on oeis.org
1, 2, 38, 1312, 66408, 4442088, 369791064, 36848702784, 4277191653888, 566809715422464, 84441103242634176, 13970100487593468480, 2541362625439551554880, 504185908064687887996800, 108336183242510523080868480
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187544,
A187546,
A187547,
A187548.
-
lahc := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(add(abs(combinat[stirling1](n,k))*lahc(k), k=0..n), n=0..20);
-
lahc[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Abs[StirlingS1[n, k]]*lahc[k], {k, 0, n}], {n, 0, 20}]
-
lahc(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(abs(stirling1(n,k))*lahc(k),k,0,n),n,0,12);
A187546
Stirling transform (of the first kind, with signs) of the central Lah numbers (A187535).
Original entry on oeis.org
1, 2, 34, 1096, 51984, 3262488, 254943384, 23853046656, 2600024557248, 323588157732096, 45276442446814656, 7035574740347812800, 1202158966644148296000, 224022356544364922931840, 45215509996613004825121920
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187544,
A187545,
A187547,
A187548.
-
lahc := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(add(combinat[stirling1](n,k)*lahc(k), k=0..n), n=0..20);
-
lahc[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[StirlingS1[n, k]*lahc[k], {k, 0, n}], {n, 0, 20}]
-
lahc(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(stirling1(n,k)*lahc(k),k,0,n),n,0,12);
A187547
L(n)H(n+1), product of the central Lah number L(n) and the harmonic number H(n).
Original entry on oeis.org
1, 3, 66, 2500, 134260, 9335088, 796938912, 80671795776, 9446603680800, 1256254443100800, 187033518310129920, 30821040496874234880, 5569495264653352381440, 1095113648992295923200000, 232773183612995427763200000, 53186532693832607435089920000
Offset: 0
Cf.
A187536,
A008297,
A111596,
A187536,
A187538,
A187539,
A187540,
A187542,
A187543,
A187544,
A187545,
A187546,
A187548.
-
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(a(n)*sum(1/k,k=1..n+1),n=0..12);
-
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[a[n]HarmonicNumber[n + 1], {n, 0, 20}]
-
a(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(a(n)*sum(1/k,k,1,n+1),n,0,12);
A235706
(I + A132440)^3: Coefficients for normalized generalized Laguerre polynomials n!*Lag(n, 3-n, -x).
Original entry on oeis.org
1, 3, 1, 6, 6, 1, 6, 18, 9, 1, 0, 24, 36, 12, 1, 0, 0, 60, 60, 15, 1, 0, 0, 0, 120, 90, 18, 1, 0, 0, 0, 0, 210, 126, 21, 1, 0, 0, 0, 0, 0, 336, 168, 24, 1, 0, 0, 0, 0, 0, 0, 504, 216, 27, 1, 0, 0, 0, 0, 0, 0, 0, 720, 270, 30, 1
Offset: 0
Triangle begins:
1;
3, 1;
6, 6, 1;
6, 18, 9, 1;
0, 24, 36, 12, 1;
0, 0, 60, 60, 15, 1;
...
....................................
With 0th row: 1
n-th row: n!*Lag(n,3-n,-x)
....................................
1st: 1!*Lag(1,2,-x) =
A062139(1,k,-x)
2nd: 2!*Lag(2,1,-x) =
A105278(2,k,x)
3rd: 3!*Lag(3,0,-x) =
A021009(3,k,-x)
4th: 4!*Lag(4,-1,-x) =
A111596(4,k,-x)
5th: 5!*Lag(5,-2,-x) = cf. x^2*
A062139(3,k,x)
6th: 6!*Lag(6,-3,-x) = cf. x^3*
A062137(3,k,-x)
....................................
n-th row: x^(n-3)*3!*Lag(3,n-3,-x)
....................................
1st: x^(-2)*3!Lag(3,-2,-x) = cf. x^(-2)*[x^2*
A062139(1,k,x)]
2nd: x^(-1)*3!Lag(3,-1,-x) = x^(-1)*
A111596(3,k,-x)
3rd: x^0*3!Lag(3,0,-x) = x^0*
A021009(3,k,-x)
4th: x^1*3!Lag(3,1,-x) = x^1*
A105278(3,k,x)
5th: x^2*3!Lag(3,2,-x) = x^2*
A062139(3,k,-x)
6th: x^3*3!Lag(3,3,-x) = x^3*
A062137(3,k,-x)
-
/* As triangle */ [[Binomial(3, n-k)*Factorial(n)/Factorial(k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 28 2017
-
Table[Binomial[3, n - k] n! / k!, {n, 0, 9}, {k, 0, n}]//Flatten (* Vincenzo Librandi, Jul 28 2017 *)
-
T(n,k) = binomial(3,n-k)*n!/k!
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 28 2017
-
row(n) = Vecrev(n!*pollaguerre(n, 3-n, -x)); \\ Michel Marcus, Feb 06 2021
A351641
Triangle read by rows: T(n,k) is the number of length n word structures with all distinct runs using exactly k different symbols.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 8, 12, 4, 1, 0, 1, 17, 28, 22, 5, 1, 0, 1, 26, 81, 68, 35, 6, 1, 0, 1, 45, 177, 251, 135, 51, 7, 1, 0, 1, 76, 410, 704, 610, 236, 70, 8, 1, 0, 1, 121, 906, 2068, 2086, 1266, 378, 92, 9, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 5, 3, 1;
0, 1, 8, 12, 4, 1;
0, 1, 17, 28, 22, 5, 1;
0, 1, 26, 81, 68, 35, 6, 1;
0, 1, 45, 177, 251, 135, 51, 7, 1;
...
The T(4,1) = 1 word is 1111.
The T(4,2) = 5 words are 1112, 1121, 1122, 1211, 1222.
The T(4,3) = 3 words are 1123, 1223, 1233.
The T(4,4) = 1 word is 1234.
-
\\ here LahI is A111596 as row polynomials.
LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))}
R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A001778
Lah numbers: a(n) = n!*binomial(n-1,5)/6!.
Original entry on oeis.org
1, 42, 1176, 28224, 635040, 13970880, 307359360, 6849722880, 155831195520, 3636061228800, 87265469491200, 2157837063782400, 55024845126451200, 1447576694865100800, 39291367432052736000, 1100158288097476608000, 31767070568814637056000
Offset: 6
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=6 of unsigned triangle
A111596.
-
[Factorial(n-6)*Binomial(n,6)*Binomial(n-1,5): n in [6..30]]; // G. C. Greubel, May 10 2021
-
A001778 := proc(n)
n!*binomial(n-1,5)/6! ;
end proc:
seq(A001778(n),n=6..30) ; # R. J. Mathar, Jan 06 2021
-
With[{c=6!},Table[n!Binomial[n-1,5]/c,{n,6,24}]] (* Harvey P. Dale, May 25 2011 *)
-
[binomial(n,6)*factorial(n-1)/factorial(5) for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
Comments