A091592 Numbers n such that there are no twin primes between n^2 and (n+1)^2.
1, 9, 19, 26, 27, 30, 34, 39, 49, 53, 77, 122
Offset: 1
Examples
9 is a term because no twin primes are found in the interval [9^2,10^2].
Links
- J. Korevaar, The prime-pair conjectures of Hardy and Littlewood, Indagationes Mathematicae, Volume 23, Issue 3, 2012, Pages 269-299.
- A. Kourbatov, Maximal Gaps Between Prime k-Tuples: A Statistical Approach, J. Int. Seq. 16 (2013) #13.5.2
- Hugo Pfoertner, Illustration of record gaps between pairs of twin primes.
- Eric Weisstein's World of Mathematics, k-Tuple Conjecture.
- Eric Weisstein's World of Mathematics, Twin Prime Conjecture.
Programs
-
Maple
isA091592 := proc(n) local p; p := nextprime(n^2) ; q := nextprime(p) ; while q < n^2+2*n do if q-p = 2 then RETURN(false) ; fi; p :=q ; q := nextprime(p) ; od: RETURN(true) ; end: for n from 1 do if isA091592(n) then printf("%d ",n) ; fi; od: # R. J. Mathar, Aug 26 2008
-
Mathematica
fQ[n_] := StringCount[ ToString@ PrimeQ[ Range[n^2, (n + 1)^2]], "True, False, True"] == 0; lst = {}; Do[ If[ fQ@n, AppendTo[lst, n]], {n, 25000}]
Extensions
Edited by N. J. A. Sloane, Aug 31 2008 at the suggestion of Pierre CAMI
Comments