cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A091592 Numbers n such that there are no twin primes between n^2 and (n+1)^2.

Original entry on oeis.org

1, 9, 19, 26, 27, 30, 34, 39, 49, 53, 77, 122
Offset: 1

Views

Author

Hugo Pfoertner, Jan 25 2004

Keywords

Comments

Numbers n such that there is no pair of twin primes P, P+2 with n^2 < P < P+2 < n^2+2*n.
The first 7 terms of this sequence were given by Ernst Jung in a discussion in the Newsgroup de.sci.mathematik entitled "Primzahlen zwischen (2x-1)^2 und (2x+1)^2" (primes between ...and...) with other significant contributions from Hermann Kremer and Rainer Rosenthal. It is conjectured that there are no further terms beyond a(12)=122. This has been tested to 50000 by Robert G. Wilson v.
Tested up to 10^7 and found no such numbers. - Arkadiusz Wesolowski, Jul 11 2011

Examples

			9 is a term because no twin primes are found in the interval [9^2,10^2].
		

Crossrefs

Programs

  • Maple
    isA091592 := proc(n) local p; p := nextprime(n^2) ; q := nextprime(p) ; while q < n^2+2*n do if q-p = 2 then RETURN(false) ; fi; p :=q ; q := nextprime(p) ; od: RETURN(true) ; end: for n from 1 do if isA091592(n) then printf("%d ",n) ; fi; od: # R. J. Mathar, Aug 26 2008
  • Mathematica
    fQ[n_] := StringCount[ ToString@ PrimeQ[ Range[n^2, (n + 1)^2]], "True, False, True"] == 0; lst = {}; Do[ If[ fQ@n, AppendTo[lst, n]], {n, 25000}]

Extensions

Edited by N. J. A. Sloane, Aug 31 2008 at the suggestion of Pierre CAMI

A113275 Lesser of twin primes for which the gap before the following twin primes is a record.

Original entry on oeis.org

3, 5, 17, 41, 71, 311, 347, 659, 2381, 5879, 13397, 18539, 24419, 62297, 187907, 687521, 688451, 850349, 2868959, 4869911, 9923987, 14656517, 17382479, 30752231, 32822369, 96894041, 136283429, 234966929, 248641037, 255949949
Offset: 1

Views

Author

Bernardo Boncompagni, Oct 21 2005

Keywords

Examples

			The smallest twin prime pair is 3, 5, then 5, 7 so a(1) = 3; the following pair is 11, 13 so a(2) = 5 because 11 - 5 = 6 > 5 - 3 = 2; the following pair is 17, 19: since 17 - 11 = 6 = 11 - 5 nothing happens; the following pair is 29, 31 so a(3)= 17 because 29 - 17 = 12 > 11 - 5 = 6.
		

Crossrefs

Record gaps are given in A113274. Cf. A002386.

Programs

  • Mathematica
    NextLowerTwinPrim[n_] := Block[{k = n + 2}, While[ !PrimeQ[k] || !PrimeQ[k + 2], k++ ]; k]; p = 3; r = 0; t = {3}; Do[q = NextLowerTwinPrim[p]; If[q > r + p, AppendTo[t, p]; r = q - p]; p = q, {n, 10^9}] (* Robert G. Wilson v, Oct 22 2005 *)

Formula

a(n) = A036061(n) - 2.
a(n) = A036062(n) - A113274(n).

Extensions

a(22)-a(30) from Robert G. Wilson v, Oct 22 2005
Terms up to a(72) are listed in Kourbatov (2013), terms up to a(75) in Oliveira e Silva's website, added by Max Alekseyev, Nov 06 2015

A036062 Increasing gaps among twin primes: the smallest prime of the second twin pair.

Original entry on oeis.org

5, 11, 29, 59, 101, 347, 419, 809, 2549, 6089, 13679, 18911, 24917, 62927, 188831, 688451, 689459, 851801, 2870471, 4871441, 9925709, 14658419, 17384669, 30754487, 32825201, 96896909, 136286441, 234970031, 248644217, 255953429
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A036061(n) + A036063(n).

Extensions

Terms a(3)-a(41) are given by Rathbun (1998).
Corrected by Jud McCranie, Jan 04 2001
Terms up to a(72) are listed in Kourbatov (2013), terms up to a(75) on Oliveira e Silva's website, added by Max Alekseyev, Nov 06 2015

A036063 Increasing gaps among twin primes: size.

Original entry on oeis.org

0, 4, 10, 16, 28, 34, 70, 148, 166, 208, 280, 370, 496, 628, 922, 928, 1006, 1450, 1510, 1528, 1720, 1900, 2188, 2254, 2830, 2866, 3010, 3100, 3178, 3478, 3802, 4768, 5290, 6028, 6280, 6472, 6550, 6646, 7048, 7978, 8038, 8992, 9310, 9316, 10198, 10336, 10666, 10708
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A036062(n) - A036061(n).
a(n) = A113274(n)-2.

Extensions

Terms 0, 4 prepended, missing term 1006 inserted, and more terms added from A113274 by Max Alekseyev, Nov 05 2015

A261701 Initial member of four twin prime pairs with gap 210 between them.

Original entry on oeis.org

599, 3917, 5021, 37361, 48779, 81929, 93281, 97157, 263399, 433049, 783149, 821801, 906119, 908669, 1197197, 1308497, 1308707, 1379237, 1464809, 1908449, 2036861, 2341979, 2408561, 2760671, 2804309, 3042491, 3042701, 3042911, 3198197, 4090649, 4543991, 5543927
Offset: 1

Views

Author

K. D. Bajpai, Aug 28 2015

Keywords

Comments

More precisely, primes p such that p + 2, p + 210, p + 212, p + 420, p + 422, p + 630, p + 632 are all primes.
All the terms in this sequence are congruent to 2 (mod 3).

Examples

			599 appears in the sequence because: (a) {599,601}, {809, 811}, {1019, 1021}, {1229, 1231} are four (not consecutive) twin prime pairs; (b) the gap between each twin prime pair (809 - 599) = (1019 -  809) = (1229 - 1019) = 210.
		

Crossrefs

Cf. A001359 (twin primes), A077800, A113274, A253624.

Programs

  • Magma
    [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) ];
    
  • Maple
    select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632]),[seq(p, p=1..10^5)]);
  • Mathematica
    k = 210; Select[Prime@Range[10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] &&  PrimeQ[# + 3 k + 2] &]
    Select[Prime[Range[400000]],AllTrue[#+{2,210,212,420,422,630,632},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 17 2019 *)
  • PARI
    forprime(p= 1, 100000, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632), print1(p,", ")));
    
  • Perl
    use ntheory ":all"; say join ", ", grep { is_prime($+210) && is_prime($+212) && is_prime($+420) && is_prime($+422) && is_prime($+630) && is_prime($+632) } @{twin_primes(1e8)}; # Dana Jacobsen, Sep 02 2015
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1, 1e8, 2, 210, 212, 420, 422, 630, 632); # Dana Jacobsen, Oct 03 2015

A261731 Initial member of five twin prime pairs with gap 210 between them.

Original entry on oeis.org

1308497, 3042491, 3042701, 7445309, 20031101, 31572521, 44687987, 54266291, 141208619, 182316521, 237416369, 357080021, 448436321, 611641187, 699458411, 761126027, 774997367, 794065967, 836452961, 915215591, 944958941, 1009194617, 1581935939, 1763255561, 1871007371
Offset: 1

Views

Author

K. D. Bajpai, Aug 30 2015

Keywords

Comments

More precisely, primes p such that p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842 are all primes.
All the terms in this sequence are congruent to 2 (mod 3).

Examples

			1308497 appears in this sequence because: (a) {1308497, 1308499}, {1308707, 1308709}, {1308917, 1308919}, {1309127, 1309129}, and {1309337, 1309339} are five twin prime pairs; (b) the gap between each twin prime pair {1308707 - 1308497} = {1308917-1308707} = {1309127 - 1308917} = {1309337 - 1309127} = 210.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) and IsPrime(p+840) and IsPrime(p+842) ];
    
  • Maple
    select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842]),[seq(p, p=1..2*10^7)]);
  • Mathematica
    k = 210; Select[Prime@Range[6*10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] &&   PrimeQ[# + 3 k + 2] && PrimeQ[# + 4 k] && PrimeQ[# + 4 k + 2] &]
    Select[Prime[Range[93*10^6]],AllTrue[#+{2,210,212,420,422,630,632,840,842},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 05 2018 *)
  • PARI
    forprime(p= 1,3*10^9, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632) && isprime(p+840) && isprime(p+842), print1(p,", ")));
    
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 2, 210, 212, 420, 422, 630, 632, 840, 842); # Dana Jacobsen, Oct 02 2015

A340573 a(n) is the smallest lesser twin prime p from A001359 such that the distance to the previous lesser twin prime is 6*n.

Original entry on oeis.org

11, 29, 59, 641, 101, 347, 2309, 569, 1931, 521, 1787, 419, 1229, 1871, 3671, 2237, 6551, 1427, 21491, 1607, 12377, 4931, 1019, 23201, 809, 19697, 12539, 2549, 38921, 10709, 37547, 8819, 9239, 34031, 6089, 80447, 15581, 46049, 36341, 14867, 38237, 36779, 87509, 71261, 15137, 40427, 13679, 54917, 41141, 50891
Offset: 1

Views

Author

Artur Jasinski, Jan 12 2021

Keywords

Comments

Lesser twin primes (with the exception of prime 3) are congruent to 5 modulo 6, which implies that distances between successive pairs of twin primes are 6*k.

Examples

			a(1)=11 because 11 - 5 = 6*1.
a(2)=41 because 41 - 29 = 6*2.
a(3)=59 because 59 - 41 = 6*3.
		

Crossrefs

Programs

  • Mathematica
    Table[a[n] = 0, {n, 1, 10000}]; Table[
    b[n] = 0, {n, 1, 10000}]; qq = {}; prev = 5; Do[
    If[Prime[n + 1] - Prime[n] == 2, k = (Prime[n] - prev)/6;
      If[b[k] == 0, a[k] = Prime[n]; b[k] = 1]; prev = Prime[n]], {n, 5,
      10000}]; list = Table[a[n], {n, 1, 50}]
    (* Second program: *)
    pp = Select[Prime[Range[10^4]], PrimeQ[#+2]&];
    dd = Differences[pp];
    a[n_] := pp[[FirstPosition[dd, 6n][[1]]+1]];
    Array[a, 50] (* Jean-François Alcover, Jan 13 2021 *)

Formula

a(n) = A052350(n) + 6*n.
Previous Showing 11-17 of 17 results.