cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 82 results. Next

A352522 Triangle read by rows where T(n,k) is the number of integer compositions of n with k weak nonexcedances (parts on or below the diagonal).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 3, 4, 3, 3, 1, 3, 4, 8, 6, 6, 4, 1, 4, 7, 12, 13, 12, 10, 5, 1, 5, 13, 16, 26, 24, 22, 15, 6, 1, 7, 19, 27, 43, 48, 46, 37, 21, 7, 1, 10, 26, 47, 68, 90, 93, 83, 58, 28, 8, 1, 14, 36, 77, 109, 159, 180, 176, 141
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
   1
   0   1
   1   0   1
   1   1   1   1
   1   3   1   2   1
   2   3   4   3   3   1
   3   4   8   6   6   4   1
   4   7  12  13  12  10   5   1
   5  13  16  26  24  22  15   6   1
   7  19  27  43  48  46  37  21   7   1
  10  26  47  68  90  93  83  58  28   8   1
For example, row n = 6 counts the following compositions:
  (6)   (15)   (114)  (123)   (1113)   (11112)  (111111)
  (24)  (42)   (132)  (1311)  (1122)   (11121)
  (33)  (51)   (141)  (2112)  (1131)   (11211)
        (231)  (213)  (2121)  (1212)   (12111)
               (222)  (2211)  (1221)
               (312)  (3111)  (21111)
               (321)
               (411)
		

Crossrefs

Row sums are A011782.
The strong version for partitions is A114088.
The opposite version for partitions is A115994.
The version for permutations is A123125, strong A173018.
Column k = 0 is A238874.
The corresponding rank statistic is A352515.
The strong version is A352521, first column A219282, rank statistic A352514.
The strong opposite is A352524, first col A008930, rank statistic A352516.
The opposite version is A352525, first col A177510, rank statistic A352517.
A000041 counts integer partitions, strict A000009.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352488 lists the weak nonexcedance set of A122111.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pw[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pw[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>=i,x,1)*v[j-i])); r+=v); [Vecrev(p) | p<-r]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

A352830 Numbers whose weakly increasing prime indices y have no fixed points y(i) = i.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A325128 in lacking 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All terms are odd.

Examples

			The terms together with their prime indices begin:
      1: {}        35: {3,4}     69: {2,9}     105: {2,3,4}
      3: {2}       37: {12}      71: {20}      107: {28}
      5: {3}       39: {2,6}     73: {21}      109: {29}
      7: {4}       41: {13}      77: {4,5}     111: {2,12}
     11: {5}       43: {14}      79: {22}      113: {30}
     13: {6}       47: {15}      83: {23}      115: {3,9}
     15: {2,3}     49: {4,4}     85: {3,7}     119: {4,7}
     17: {7}       51: {2,7}     87: {2,10}    121: {5,5}
     19: {8}       53: {16}      89: {24}      123: {2,13}
     21: {2,4}     55: {3,5}     91: {4,6}     127: {31}
     23: {9}       57: {2,8}     93: {2,11}    129: {2,14}
     25: {3,3}     59: {17}      95: {3,8}     131: {32}
     29: {10}      61: {18}      97: {25}      133: {4,8}
     31: {11}      65: {3,6}    101: {26}      137: {33}
     33: {2,5}     67: {19}     103: {27}      139: {34}
		

Crossrefs

* = unproved
These partitions are counted by A238394, strict A025147.
These are the zeros of A352822.
*The reverse version is A352826, counted by A064428 (strict A352828).
*The complement reverse version is A352827, counted by A001522.
The complement is A352872, counted by A238395.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]==0&]

A115995 Sum of the sizes of the Durfee squares of all partitions of n.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 16, 23, 36, 52, 76, 106, 152, 207, 286, 386, 522, 691, 920, 1202, 1576, 2038, 2636, 3373, 4320, 5478, 6944, 8738, 10984, 13717, 17116, 21232, 26308, 32441, 39944, 48977, 59970, 73147, 89090, 108151, 131090, 158417, 191166, 230049, 276444
Offset: 0

Views

Author

Emeric Deutsch, Feb 11 2006

Keywords

Comments

Also sum of positive cranks of all partitions of n, n>1; see A064391. - Vladeta Jovovic, Oct 20 2006
This sequence, its author and the author of the above comment were mentioned in the Andrews-Chan-Kim paper, where it is called C_1 (see the remark on page 6). - Omar E. Pol, Apr 06 2012

Examples

			a(4) = 6 because the partitions [4], [3,1], [2,2], [2,1,1] and [1,1,1,1] of 4 have Durfee squares of sizes 1,1,2,1 and 1, respectively.
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
  • G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).

Crossrefs

Programs

  • Maple
    g:= add(k*z^(k^2)/mul((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,56): seq(coeff(gser,z,n), n=0..52);
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(add(b(k, d)*b(n-d^2-k, d), k=0..n-d^2)*d, d=1..isqrt(n)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Apr 09 2012
    # Third Maple program, based on Theorem 1 of Andrews-Chan-Kim:
    M:=101;
    qinf:=mul(1-q^i,i=1..M);
    qinf:=series(qinf,q,M);
    C1:=add((-1)^(n+1)*q^(n*(n+1)/2)/(1-q^n),n=1..M);
    C1:=series(C1/qinf,q,M);
    seriestolist(%); # N. J. A. Sloane, Sep 04 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]] ; a[n_] := Sum[ Sum[b[k, d]*b[n - d^2 - k, d], {k, 0, n - d^2}]*d, {d, 1, Sqrt[n]}]; Table [a[n], {n, 0, 70}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
  • PARI
    N=66; x='x+O('x^N); concat([0], Vec( sum(n=0,N, n*x^(n^2) / prod(k=1,n, 1-x^k)^2))) \\ Joerg Arndt, Mar 26 2014
    
  • Sage
    [sum(p.frobenius_rank() for p in Partitions(n)) for n in range(45)] # Peter Luschny, Sep 15 2014

Formula

G.f.: Sum_{k>=1} (k*z^(k^2) / Product_{j=1..k} (1 - z^j)^2 ).
a(n) = Sum_{k=1..floor(sqrt(n))} k*A115994(n,k).
Convolution of A067742 and A000041. - Vladeta Jovovic, Oct 20 2006
a(n) = A195012(n) + A209616(n), n >= 1. - Omar E. Pol, Apr 06 2012
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Jan 02 2019

Extensions

Edited and verified by Franklin T. Adams-Watters, Mar 11 2006

A352872 Numbers whose weakly increasing prime indices y have a fixed point y(i) = i.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Apr 06 2022

Keywords

Comments

First differs from A118672 in having 75.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
      2: {1}           28: {1,1,4}         56: {1,1,1,4}
      4: {1,1}         30: {1,2,3}         58: {1,10}
      6: {1,2}         32: {1,1,1,1,1}     60: {1,1,2,3}
      8: {1,1,1}       34: {1,7}           62: {1,11}
      9: {2,2}         36: {1,1,2,2}       63: {2,2,4}
     10: {1,3}         38: {1,8}           64: {1,1,1,1,1,1}
     12: {1,1,2}       40: {1,1,1,3}       66: {1,2,5}
     14: {1,4}         42: {1,2,4}         68: {1,1,7}
     16: {1,1,1,1}     44: {1,1,5}         70: {1,3,4}
     18: {1,2,2}       45: {2,2,3}         72: {1,1,1,2,2}
     20: {1,1,3}       46: {1,9}           74: {1,12}
     22: {1,5}         48: {1,1,1,1,2}     75: {2,3,3}
     24: {1,1,1,2}     50: {1,3,3}         76: {1,1,8}
     26: {1,6}         52: {1,1,6}         78: {1,2,6}
     27: {2,2,2}       54: {1,2,2,2}       80: {1,1,1,1,3}
For example, the multiset {2,3,3} with Heinz number 75 has a fixed point at position 3, so 75 is in the sequence.
		

Crossrefs

* = unproved
These partitions are counted by A238395, strict A096765.
These are the nonzero positions in A352822.
*The complement reverse version is A352826, counted by A064428.
*The reverse version is A352827, counted by A001522 (strict A352829).
The complement is A352830, counted by A238394 (strict A025147).
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
A008290 counts permutations by fixed points, nonfixed A098825.
A056239 adds up prime indices, row sums of A112798 and A296150.
A114088 counts partitions by excedances.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A124010 gives prime signature, sorted A118914, conjugate rank A238745.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Select[Range[100],pq[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]>0&]

A352521 Triangle read by rows where T(n,k) is the number of integer compositions of n with k strong nonexcedances (parts below the diagonal).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 2, 2, 1, 0, 4, 5, 3, 3, 1, 0, 6, 8, 7, 6, 4, 1, 0, 9, 12, 15, 12, 10, 5, 1, 0, 13, 19, 27, 25, 22, 15, 6, 1, 0, 18, 32, 43, 51, 46, 37, 21, 7, 1, 0, 25, 51, 70, 94, 94, 83, 58, 28, 8, 1, 0, 35, 77, 117, 162, 184, 176, 141, 86, 36, 9, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
   1
   1   0
   1   1   0
   2   1   1   0
   3   2   2   1   0
   4   5   3   3   1   0
   6   8   7   6   4   1   0
   9  12  15  12  10   5   1   0
  13  19  27  25  22  15   6   1   0
  18  32  43  51  46  37  21   7   1   0
  25  51  70  94  94  83  58  28   8   1   0
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (6)    (51)   (312)   (1113)   (11112)  (111111)  .
  (15)   (114)  (411)   (1122)   (11121)
  (24)   (132)  (1131)  (2112)   (11211)
  (33)   (141)  (1212)  (2121)   (21111)
  (42)   (213)  (1221)  (3111)
  (123)  (222)  (1311)  (12111)
         (231)  (2211)
         (321)
		

Crossrefs

Row sums are A011782.
The version for partitions is A114088.
Row sums without the last term are A131577.
The version for permutations is A173018.
Column k = 0 is A219282.
The corresponding rank statistic is A352514.
The weak version is A352522, first column A238874, rank statistic A352515.
The opposite version is A352524, first column A008930, rank stat A352516.
The weak opposite version is A352525, first col A177510, rank stat A352517.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352490 is the strong nonexcedance set of A122111.
A352523 counts comps by nonfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pa[y_]:=Length[Select[Range[Length[y]],#>y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pa[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>i,x,1)*v[j-i])); r+=v); vector(#v, i, Vecrev(r[i], i))}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

Extensions

Terms a(66) and beyond from Andrew Howroyd, Jan 19 2023

A352524 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 1, 11, 18, 3, 21, 35, 8, 41, 67, 20, 80, 131, 44, 1, 157, 257, 94, 4, 310, 505, 197, 12, 614, 996, 406, 32, 1218, 1973, 825, 80, 2421, 3915, 1669, 186, 1, 4819, 7781, 3364, 415, 5, 9602, 15486, 6762, 901, 17, 19147, 30855, 13567, 1918, 49
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
     1
     1
     1     1
     2     2
     3     5
     6     9     1
    11    18     3
    21    35     8
    41    67    20
    80   131    44     1
   157   257    94     4
   310   505   197    12
   614   996   406    32
For example, row n = 5 counts the following compositions:
  (113)    (5)     (23)
  (122)    (14)
  (1112)   (32)
  (1121)   (41)
  (1211)   (131)
  (11111)  (212)
           (221)
           (311)
           (2111)
		

Crossrefs

The version for permutations is A008292, weak A123125.
Column k = 0 is A008930.
Row sums are A011782.
The opposite version for partitions is A114088.
The weak version for partitions is A115994.
Column k = 1 is A351983.
The corresponding rank statistic is A352516.
The opposite version is A352521, first col A219282, rank statistic A352514.
The weak opposite version is A352522, first col A238874, rank stat A352515.
The weak version is A352525, first col (k = 1) A177510, rank stat A352517.
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352487 lists the excedance set of A122111, opposite A352490.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pd[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u)={vector(#v, k, sum(i=1, k-1, v[k-i]*u[i]))}
    T(n)={my(v=vector(1+n), s); v[1]=1; s=v; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1))); s+=v); [Vecrev(p) | p<-s]}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 02 2023

A096771 Triangle read by rows: T(n,m) is the number of partitions of n that (just) fit inside an m X m box, but not in an (m-1) X (m-1) box. Partitions of n with Max(max part, length) = m.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 0, 3, 2, 2, 0, 0, 3, 4, 2, 2, 0, 0, 2, 5, 4, 2, 2, 0, 0, 1, 7, 6, 4, 2, 2, 0, 0, 1, 6, 9, 6, 4, 2, 2, 0, 0, 0, 7, 11, 10, 6, 4, 2, 2, 0, 0, 0, 5, 14, 13, 10, 6, 4, 2, 2, 0, 0, 0, 5, 15, 19, 14, 10, 6, 4, 2, 2, 0, 0, 0, 3, 17, 22, 21, 14, 10, 6, 4, 2, 2, 0, 0, 0, 2, 17, 29
Offset: 1

Views

Author

Wouter Meeussen, Aug 21 2004

Keywords

Comments

Row sums are A000041. Columns are finite and sum to A051924. The final floor(n/2) terms of each row are the reverse of the initial terms of 2*A000041.

Examples

			T(5,3)=3, counting 32, 311 and 221.
From _Gus Wiseman_, Apr 12 2019: (Start)
Triangle begins:
  1
  0  2
  0  1  2
  0  1  2  2
  0  0  3  2  2
  0  0  3  4  2  2
  0  0  2  5  4  2  2
  0  0  1  7  6  4  2  2
  0  0  1  6  9  6  4  2  2
  0  0  0  7 11 10  6  4  2  2
  0  0  0  5 14 13 10  6  4  2  2
  0  0  0  5 15 19 14 10  6  4  2  2
  0  0  0  3 17 22 21 14 10  6  4  2  2
  0  0  0  2 17 29 27 22 14 10  6  4  2  2
  0  0  0  1 17 33 36 29 22 14 10  6  4  2  2
  0  0  0  1 15 39 45 41 30 22 14 10  6  4  2  2
  0  0  0  0 14 41 57 52 43 30 22 14 10  6  4  2  2
  0  0  0  0 11 47 67 69 57 44 30 22 14 10  6  4  2  2
  0  0  0  0  9 46 81 85 76 59 44 30 22 14 10  6  4  2  2
(End)
		

Crossrefs

A version with reflected rows is A338621.
Related triangles are A115720, A325188, A325189, A325192, A325200, with Heinz-encoded versions A257990, A325169, A065770, A325178, A325195.

Programs

  • Mathematica
    Table[Count[Partitions[n], q_List /; Max[Length[q], Max[q]]===k], {n, 16}, {k, n}]
  • PARI
    row(n)={my(r=vector(n)); forpart(p=n, r[max(#p,p[#p])]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k>=1} k*T(n,k) = A368985(n). - Andrew Howroyd, Jan 12 2024

A325164 Heinz numbers of integer partitions with Durfee square of length 2.

Original entry on oeis.org

9, 15, 18, 21, 25, 27, 30, 33, 35, 36, 39, 42, 45, 49, 50, 51, 54, 55, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 126, 129, 130, 132, 133, 135, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also positions of 2 in A257990.
First differs from A105441 in lacking 125.
The Durfee length 1 case is A093641. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485.

Examples

			The sequence of terms together with their prime indices begins:
   9: {2,2}
  15: {2,3}
  18: {1,2,2}
  21: {2,4}
  25: {3,3}
  27: {2,2,2}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
  39: {2,6}
  42: {1,2,4}
  45: {2,2,3}
  49: {4,4}
  50: {1,3,3}
  51: {2,7}
  54: {1,2,2,2}
  55: {3,5}
  57: {2,8}
  60: {1,1,2,3}
		

Crossrefs

Programs

  • Mathematica
    durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]];
    Select[Range[100],durf[#]==2&]

A352828 Number of strict integer partitions y of n with no fixed points y(i) = i.

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 2, 3, 4, 6, 8, 10, 12, 14, 16, 19, 22, 26, 32, 38, 46, 56, 66, 78, 92, 106, 123, 142, 162, 186, 214, 244, 280, 322, 368, 422, 484, 552, 630, 718, 815, 924, 1046, 1180, 1330, 1498, 1682, 1888, 2118, 2372, 2656, 2972, 3322, 3712, 4146, 4626
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(12) = 12 partitions (A-C = 10..12; empty column indicated by dot; 0 is the empty partition):
   0  .  2  3    4    5    6    7    8     9     A      B      C
            21   31   41   51   43   53    54    64     65     75
                                61   71    63    73     74     84
                                     431   81    91     83     93
                                           432   532    A1     B1
                                           531   541    542    642
                                                 631    632    651
                                                 4321   641    732
                                                        731    741
                                                        5321   831
                                                               5421
                                                               6321
		

Crossrefs

The version for permutations is A000166, complement A002467.
The reverse version is A025147, complement A238395, non-strict A238394.
The non-strict version is A064428 (unproved, ranked by A352826 or A352873).
The version for compositions is A238351, complement A352875.
The complement is A352829, non-strict A001522 (unproved, ranked by A352827 or A352874).
A000041 counts partitions, strict A000009.
A000700 counts self-conjugate partitions, ranked by A088902.
A008290 counts permutations by fixed points, unfixed A098825.
A115720 and A115994 count partitions by their Durfee square.
A238349 counts compositions by fixed points, complement A352523.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&pq[#]==0&]],{n,0,30}]

Formula

G.f.: Sum_{n>=0} q^(n*(3*n+1)/2)*Product_{k=1..n} (1+q^k)/(1-q^k). - Jeremy Lovejoy, Sep 26 2022

A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 8, 7, 12, 10, 16, 14, 23, 19, 30, 26, 42, 35, 54, 47, 73, 62, 94, 82, 124, 107, 158, 139, 206, 179, 260, 230, 334, 293, 420, 372, 532, 470, 664, 591, 835, 740, 1034, 924, 1288, 1148, 1588, 1422, 1962, 1756, 2404, 2161
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2022

Keywords

Comments

A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros.
Conjecture:
(1) This is A064428 interleaved with A001522.
(2) Reversing rows gives A300788, the strict version of A300787.

Examples

			Triangle begins:
  0: {1,0}
  1: {0,1}
  2: {1,1}
  3: {2,1}
  4: {3,2}
  5: {4,3}
  6: {6,5}
  7: {8,7}
  8: {12,10}
  9: {16,14}
For example, row n = 7 counts the following partitions:
  (7)       (52)
  (61)      (421)
  (511)     (322)
  (43)      (3211)
  (4111)    (2221)
  (331)     (22111)
  (31111)   (1111111)
  (211111)
		

Crossrefs

Row sums are A000041.
The version for permutations is A008290, for nonfixed points A098825.
The columns appear to be A064428 and A001522.
The version counting strong nonexcedances is A114088.
The version for compositions is A238349, rank statistic A352512.
The version for reversed partitions is A238352.
Reversing rows appears to give A300788, the strict case of A300787.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 and A115994 count partitions by their Durfee square.
A330644 counts non-self-conjugate partitions, ranked by A352486.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}]
Previous Showing 21-30 of 82 results. Next