cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 1364 results. Next

A033762 Product t2(q^d); d | 3, where t2 = theta2(q) / (2 * q^(1/4)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 2, 0, 0, 2, 2, 0, 1, 1, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 0, 4, 2, 0, 2, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 0, 1, 0, 0, 2, 2, 0, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Keywords

Comments

Number of solutions of 8*n + 4 = x^2 + 3*y^2 in positive odd integers. - Michael Somos, Sep 18 2004
Half the number of integer solutions of 4*n + 2 = x^2 + y^2 + z^2 where 0 = x + y + z and x and y are odd. - Michael Somos, Jul 03 2011
Given g.f. A(x), then q^(1/2) * 2 * A(q) is denoted phi_1(z) where q = exp(Pi i z) in Conway and Sloane.
Half of theta series of planar hexagonal lattice (A2) with respect to an edge.
Bisection of A002324. Number of ways of writing n as a sum of a triangular plus three times a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + x + 2*x^3 + x^4 + 2*x^6 + 2*x^9 + 2*x^10 + x^12 + x^13 + 2*x^15 + ...
G.f. = q + q^3 + 2*q^7 + q^9 + 2*q^13 + 2*q^19 + 2*q^21 + q^25 + q^27 + 2*q^31 + ...
a(6) = 2 since 8*6 + 4 = 52 = 5^2 + 3*3^2 = 7^2 + 3*1^2.
		

References

  • Burce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 223 Entry 3(i).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 103. See Eq. (13).
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.27).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 202); A[2] + A[4]; /* Michael Somos, Jul 25 2014 */
  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Jul 03 2011 *)
    QP = QPochhammer; s = (QP[q^2]*QP[q^6])^2/(QP[q]*QP[q^3]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# < 2, 0^#2, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger@(2 n + 1))]; (* Michael Somos, Mar 06 2016 *)
    %t A033762 a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)], {x, 0, n}]; (* Michael Somos, Mar 06 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^2 / (eta(x + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 18 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv( n, d, kronecker( -12, d) * (n / d % 2)))}; /* Michael Somos, Nov 04 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, n = 8*n + 4; sum( j=1, sqrtint( n\3), (j%2) * issquare(n - 3*j^2)))} /* Michael Somos, Nov 04 2005 */
    
  • PARI
    {a(n) = if( n<0, 0, sumdiv(2*n + 1, d, kronecker(-3, d)))}; /* Michael Somos, Mar 06 2016 */
    

Formula

Expansion of q^(-1/2) * (eta(q^2) * eta(q^6))^2 / (eta(q) * eta(q^3)) in powers of q. - Michael Somos, Apr 18 2004
Expansion of q^(-1) * (a(q) - a(q^4)) / 6 in powers of q^2 where a() is a cubic AGM theta function. - Michael Somos, Oct 24 2006
Expansion of psi(x) * psi(x^3) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jul 03 2011
Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, -2, ...]. - Michael Somos, Apr 18 2004
From Michael Somos, Sep 18 2004: (Start)
Given g.f. A(x), then B(x) = (x * A(x^2))^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 4*u*v*w + 16*v*w^2 - 8*w*v^2 - w*u^2.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1, b(p^e) = (1 + (-1)^e) / 2 if p==5 (mod 6) otherwise b(p^e) = e+1. (Clarification: the g.f. A(x) is not the primary function of interest, but rather B(x) = x * A(x^2), which is an eta-quotient and is the generating function of a multiplicative sequence.)
G.f.: (Sum_{j>0} x^((j^2 - j) / 2)) * (Sum_{k>0} x^(3(k^2 - k) / 2)) = Product_{k>0} (1 + x^k) * (1 - x^(2*k)) * (1 + x^(3*k)) * (1 - x^(6*k)).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k * (1 - x^k) * (1 - x^(4*k)) * (1 - x^(5*k)) / (1 - x^(12*k)). (End)
G.f.: s(4)^2*s(12)^2/(s(2)*s(6)), where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - x^(4*k) / (1 + x^(4*k) + x^(8*k)). - Michael Somos, Nov 04 2005
a(n) = A002324(2*n + 1) = A035178(2*n + 1) = A091393(2*n + 1) = A093829(2*n + 1) = A096936(2*n + 1) = A112298(2*n + 1) = A113447(2*n + 1) = A113661(2*n + 1) = A113974(2*n + 1) = A115979(2*n + 1) = A122860(2*n + 1) = A123331(2*n + 1) = A123484(2*n + 1) = A136748(2*n + 1) = A137608(2*n + 1). A005881(n) = 2*a(n).
6 * a(n) = A004016(6*n + 3). - Michael Somos, Mar 06 2016
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 23 2023

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A046897 Sum of divisors of n that are not divisible by 4.

Original entry on oeis.org

1, 3, 4, 3, 6, 12, 8, 3, 13, 18, 12, 12, 14, 24, 24, 3, 18, 39, 20, 18, 32, 36, 24, 12, 31, 42, 40, 24, 30, 72, 32, 3, 48, 54, 48, 39, 38, 60, 56, 18, 42, 96, 44, 36, 78, 72, 48, 12, 57, 93, 72, 42, 54, 120, 72, 24, 80, 90, 60, 72, 62, 96, 104, 3, 84, 144, 68, 54, 96, 144, 72
Offset: 1

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The o.g.f. is (theta_3(0,x)^4 - 1)/8, see the Hardy reference, eqs. 9.2.1, 9.2.3 and 9.2.4 on p. 133 for Sum' m*u_m. Also Hardy-Wright, p. 314. See also the Somos, Jan 25 2008 formula below. - Wolfdieter Lang, Dec 11 2016

Examples

			G.f. = q + 3*q^2 + 4*q^3 + 3*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 3*q^8 + 13*q^9 + ...
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 194.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island 2002, p. 133.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fifth edition, 1979, p. 314.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 31, Article 273.
  • C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall, 2006.

Crossrefs

Cf. A000203, A000118, A051731, A069733, A027748, A124010, A190621, A000593 (not divis. by 2), A046913 (not divis. by 3), A116073 (not divis. by 5).

Programs

  • Haskell
    a046897 1 = 1
    a046897 n = product $ zipWith
                (\p e -> if p == 2 then 3 else div (p ^ (e + 1) - 1) (p - 1))
                (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Aug 12 2015
  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 72); B := (A[1] - 1)/8 + A[2]; B; /* Michael Somos, Dec 30 2014 */
    
  • Maple
    A046897 := proc(n) if n mod 4 = 0 then numtheory[sigma](n)-4*numtheory[sigma](n/4) ; else numtheory[sigma](n) ; end if; end proc: # R. J. Mathar, Mar 23 2011
  • Mathematica
    a[n_] := Sum[ Boole[ !Divisible[d, 4]]*d, {d, Divisors[n]}]; Table[ a[n], {n, 1, 71}] (* Jean-François Alcover, Dec 12 2011 *)
    DivisorSum[#1, # &, Mod[#, 4] != 0 &] & /@ Range[71] (* Jayanta Basu, Jun 30 2013 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 - 1) / 8, {q, 0, n}]; (* Michael Somos, Dec 30 2014 *)
    f[2, e_] := 3; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, if(d%4, d)))};
    

Formula

a(n) = (-1)^(n+1)*Sum_{d divides n} (-1)^(n/d+d)*d. Multiplicative with a(2^e) = 3, a(p^e) = (p^(e+1)-1)/(p-1) for an odd prime p. - Vladeta Jovovic, Sep 10 2002 [For a proof of the multiplicative property, see for example Moreno and Wagstaff, p. 33. - N. J. A. Sloane, Nov 09 2016]
G.f.: Sum_{k>0} x^k/(1+(-x)^k)^2, or Sum_{k>0} k*x^k/(1+(-x)^k). - Vladeta Jovovic, Dec 16 2002
Expansion of (1 - phi(q)^4) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jan 25 2008
Equals inverse Mobius transform of A190621. - Gary W. Adamson, Jul 03 2008
A000118(n) = 8*a(n) for all n>0.
Dirichlet g.f.: (1 - 4^(1-s)) * zeta(s) * zeta(s-1). - Michael Somos, Oct 21 2015
L.g.f.: log(Product_{k>=1} (1 - x^(4*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
From Peter Bala, Dec 19 2021: (Start)
Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = Sum_{n >= 1} x^n*(1 + x^n + x^(2*n))/( n*(1 - x^(4*n)) )
G.f.: Sum_{n >= 1} x^n*(x^(6*n) + 2*x^(5*n) + 3*x^(4*n) + 3*x^(2*n) + 2*x^n + 1)/(1 - x^(4*n))^2. (End)
Sum_{k=1..n} a(k) ~ (Pi^2/16) * n^2. - Amiram Eldar, Oct 04 2022

A226535 Expansion of b(-q) in powers of q where b() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 0, -6, -3, 0, 0, 6, 0, -6, 0, 0, 6, 6, 0, 0, -3, 0, 0, 6, 0, -12, 0, 0, 0, 3, 0, -6, -6, 0, 0, 6, 0, 0, 0, 0, 6, 6, 0, -12, 0, 0, 0, 6, 0, 0, 0, 0, 6, 9, 0, 0, -6, 0, 0, 0, 0, -12, 0, 0, 0, 6, 0, -12, -3, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, -6, -6, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Sep 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as f(z) in Case B which is associated with F(t) the g.f. of A006077.

Examples

			G.f. = 1 + 3*q - 6*q^3 - 3*q^4 + 6*q^7 - 6*q^9 + 6*q^12 + 6*q^13 - 3*q^16 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q]^3 / QPochhammer[ -q^3], {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A))^3, n))}

Formula

Expansion of f(q)^3 / f(q^3) in powers of q where f() is a Ramanujan theta function.
Expansion of 2*b(q^4) - b(q) = b(q^2)^3 / (b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of eta(q^2)^9 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6))^3 in powers of q.
Euler transform of period 12 sequence [ 3, -6, 2, -3, 3, -4, 3, -3, 2, -6, 3, -2, ...].
Moebius transform is period 36 sequence [ 3, -3, -9, -3, -3, 9, 3, 3, 0, 3, -3, 9, 3, -3, 9, -3, -3, 0, 3, 3, -9, 3, -3, -9, 3, -3, 0, -3, -3, -9, 3, 3, 9, 3, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 972^(1/2) (t / i) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227696.
G.f.: f(q) = F(t(q)) where F() is the g.f. of A006077 and t() is the g.f. of A227454.
G.f.: Product_{k>0} (1 - (-x)^k)^3 / (1 - (-x)^(3*k)).
a(3*n + 2) = a(4*n + 2) = 0.
a(n) = (-1)^n * A005928(n) = (-1)^(((n+1) mod 6 ) > 3) * A113062(n). A113062(n) = |a(n)|.
a(3*n) = A180318(n). a(2*n + 1) = 3 * A123530(n). a(4*n) = A005928(n).

A227216 Expansion of f(-q^2, -q^3)^5 / f(-q)^3 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 4, 2, 1, 3, 6, 4, 0, -1, 4, 6, 4, 2, 2, 2, 3, 4, 2, 0, 1, 6, 8, 2, 0, 3, 6, 0, -2, 0, 6, 6, 4, 4, 2, 4, 3, 4, 0, -2, 0, 6, 8, 2, 2, -1, 6, 4, 2, 1, 4, 6, 4, 2, 0, 6, 0, 0, 0, 0, 4, 6, 8, 2, 1, 2, 12, 4, -2, -2, 2, 6, 0, 2, 2, 2, 0, 8, 4, 0, 3, 3, 8, 2
Offset: 0

Views

Author

Michael Somos, Sep 21 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) refers to Case D corresponding to the Apery numbers (A005258).

Examples

			G.f. = 1 + 3*q + 4*q^2 + 2*q^3 + q^4 + 3*q^5 + 6*q^6 + 4*q^7 - q^9 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(5), 1), 20); A[1] + 3*A[2]; /* Michael Somos, Jun 10 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[ n == 0], Sum[ Re[(3 - I) {1, I, -I, -1, 0}[[ Mod[ d, 5, 1] ]] ], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^5] QPochhammer[ q^4, q^5])^5, {q, 0, n}]; (* Michael Somos, Jun 10 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, real( (3 - I) * [ 0, 1, I, -I, -1][ d%5 + 1])))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, -3, 2, 2, -3][k%5 + 1], 1 + x * O(x^n)), n))};
    
  • Sage
    A = ModularForms( Gamma1(5), 1, prec=20) . basis(); A[0] + 3*A[1]; # Michael Somos, Jun 10 2014
    

Formula

Expansion of f(-q)^2 * (f(-q^5) / f(-q, -q^4))^5 = f(-q^2, -q^3)^2 * (f(-q^5) / f(-q, -q^4))^3 in powers of q where f() is a Ramanujan theta function.
Euler transform of period 5 sequence [ 3, -2, -2, 3, -2, ...].
Moebius transform is period 5 sequence [ 3, 1, -1, -3, 0, ...]. - Michael Somos, Jun 10 2014
G.f. = g(t(q)) where g(), t() are the g.f. for A005258 and A078905.
G.f.: (Product_{k>0} (1 - x^k)^2) / (Product_{k>0} (1 - x^(5*k - 1)) * (1 - x^(5*k - 4)))^5.

A007242 McKay-Thompson series of class 2a for the Monster group.

Original entry on oeis.org

1, -492, -22590, -367400, -3764865, -28951452, -182474434, -990473160, -4780921725, -20974230680, -84963769662, -321583404672, -1147744866180, -3890805976500, -12601590210180, -39183052547592, -117437602167291, -340431109329600, -957251463332600, -2617490612355240, -6975126788952456, -18149106017123576, -46187557595906250
Offset: 0

Views

Author

Keywords

Comments

A more correct name would be: Expansion of replicable function of class 2a. See Alexander et al., 1992. - N. J. A. Sloane, Jun 12 2015
From "More on Replicable Functions": 'The fifth row consists of the class names. As stated above, the numbers are the replication orders. For those functions arising in Monstrous Moonshine, the letter corresponds to the relevant conjugacy class in the Monster in Atlas notation (or, if there is more than one class, the one with the first letter). For non-monstrous functions, the class names use lower case letters and, in accordance with Atlas notation, are arranged generally in descending order of Frobenian.'
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			T2a = 1/q - 492*q - 22590*q^3 - 367400*q^5 - 3764865*q^7 - ...
196884 - (-492) = 197376 = 256 * 771, 21493760 - 0 = 256 * 83960, ...
		

References

  • T. Gannon, Moonshine Beyond the Monster, Cambridge, 2006; see p. 425.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(q*(j(q)-1728))^(k/24): A106203 (k=1), A289330 (k=2), A289331 (k=3), A289332 (k=4), A289333 (k=5), A289334 (k=6), this sequence (k=12), A289063 (k=24).

Programs

  • Mathematica
    a[ n_] :=  If[ n < 1, Boole[n == 0], SeriesCoefficient[ Sqrt[ 1728 (KleinInvariantJ[ Log[x] /(Pi I)] - 1) + O[x]^(2 n)], {x, 0, 2 n - 1}]] (* Michael Somos, Jun 29 2011 *)
    nmax = 30; CoefficientList[Series[x^(1/2)*(-8*(2*EllipticTheta[2, 0, Sqrt[x]]^12 - 3*EllipticTheta[2, 0, Sqrt[x]]^8* EllipticTheta[3, 0, Sqrt[x]]^4 - 3*EllipticTheta[3, 0, Sqrt[x]]^8* EllipticTheta[2, 0, Sqrt[x]]^4 + 2*EllipticTheta[3, 0, Sqrt[x]]^12))/(EllipticTheta[3, 0, Sqrt[x]]^4*(EllipticTheta[2, 0, Sqrt[x]]^4 - EllipticTheta[3, 0, Sqrt[x]]^4)* EllipticTheta[2, 0, Sqrt[x]]^4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 11 2017, check of formula by G. A. Edgar *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 55; f1A := (eta[q]/eta[q^2] )^24*(1 +256*(eta[q^2]/eta[q])^24)^3; A007242:= CoefficientList[ Series[(q*f1A - 1728*q + O[q]^nmax)^(1/2), {q, 0, 50}], q]; Table[ A007242[[n]], {n, 1, 50}] (* G. C. Greubel, May 09 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sqrt( ellj( x^2 * (1 + x * O(x^(2*n)) ) ) - 1728), 2*n - 1))} /* Michael Somos, Jun 29 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, n, -504 * sigma(k, 5) * x^k, 1 + x * O(x^n)) / eta(x + x * O(x^n))^12, n))} /* Michael Somos, Mar 17 2013 */

Formula

Sqrt(j-1728), where j is the j-function, see A000521.
A014708(2*n - 1) == a(n) (mod 256). That is, the coefficients of (T1A - T2a) are all divisible by 256. - Michael Somos, Jun 29 2011
Expansion of (-phi(-q)^12 - 30 * phi(-q)^8 * phi(q)^4 + 96 * phi(-q)^4 * phi(q)^8 - 64 * phi(q)^12) / f(-q)^12 where phi(), f() are Ramanujan theta functions. - Michael Somos, Mar 17 2013
Expansion of (-8*(2*theta_2(0, q)^12-3*theta_2(0, q)^8*theta_3(0, q)^4-3*theta_3(0, q)^8*theta_2(0, q)^4+2*theta_3(0, q)^12))/(theta_3(0, q)^4*(theta_2(0, q)^4-theta_3(0, q)^4)*theta_2(0, q)^4) in powers of q. Shows an analytic choice of the square root for complex q, 0 < |q| < 1. - G. A. Edgar, Mar 10 2017
G.f.: Product_{k>=1} (1-q^k)^(A289061(k)/2). - Seiichi Manyama, Jul 02 2017
a(n) ~ -exp(2*Pi*sqrt(2*n)) / (2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jul 09 2017

A227454 Expansion of q * (f(q^9) / f(q))^3 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 9, -22, 51, -108, 221, -429, 810, -1476, 2631, -4572, 7802, -13056, 21519, -34918, 55935, -88452, 138332, -213990, 327852, -497592, 748833, -1117692, 1655719, -2434938, 3556791, -5161808, 7445631, -10677096, 15226658, -21599469, 30485268, -42817788
Offset: 1

Views

Author

Michael Somos, Sep 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Zagier (2009) denotes the g.f. as t(z) in Case B which is associated with F(t) the g.f. of A006077.

Examples

			G.f. = q - 3*q^2 + 9*q^3 - 22*q^4 + 51*q^5 - 108*q^6 + 221*q^7 - 429*q^8 + ...
		

References

  • D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q^9] / QPochhammer[ -q])^3, {q, 0, n}]
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A) * eta(x^36 + A)))^3, n))}

Formula

Expansion of c(-q^3) / (-3 * b(-q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9) * eta(q^36)))^3 in powers of q.
Euler transform of period 36 sequence [ -3, 6, -3, 3, -3, 6, -3, 3, 0, 6, -3, 3, -3, 6, -3, 3, -3, 0, -3, 3, -3, 6, -3, 3, -3, 6, 0, 3, -3, 6, -3, 3, -3, 6, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A227498.
G.f. t(q) satisfies f(q) = F(t(q)) where F() is the g.f. of A006077 and f() is the g.f. of A226535
G.f.: x * (Product_{k>0} (1 - (-x)^(9*k)) / (1 - (-x)^k))^3.
a(n) = -(-1)^n * A121589(n).

A038722 Take the sequence of natural numbers (A000027) and reverse successive subsequences of lengths 1,2,3,4,... .

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 10, 9, 8, 7, 15, 14, 13, 12, 11, 21, 20, 19, 18, 17, 16, 28, 27, 26, 25, 24, 23, 22, 36, 35, 34, 33, 32, 31, 30, 29, 45, 44, 43, 42, 41, 40, 39, 38, 37, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 78, 77, 76
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The rectangular array having A038722 as antidiagonals is the transpose of the rectangular array given by A000217. Column 1 of array A038722 is A000124 (central polygonal numbers). Array A038722 is the dispersion of the complement of A000124. - Clark Kimberling, Apr 05 2003
a(n) is the smallest number not yet in the sequence such that n + a(n) is one more than a square. - Franklin T. Adams-Watters, Apr 06 2009
From Hieronymus Fischer, Apr 30 2012: (Start)
A reordering of the natural numbers.
The sequence is self-inverse in that a(a(n)) = n.
Also: a(1) = 1, a(n) = m (where m is the least triangular number > a(k) for 1 <= k < n), if the minimal natural number not yet in the sequence is greater than a(n-1), otherwise a(n) = a(n-1)-1. (End)

Examples

			The rectangular array view is
   1    2    4    7   11   16   22   29   37   46
   3    5    8   12   17   23   30   38   47   57
   6    9   13   18   24   31   39   48   58   69
  10   14   19   25   32   40   49   59   70   82
  15   20   26   33   41   50   60   71   83   96
  21   27   34   42   51   61   72   84   97  111
  28   35   43   52   62   73   85   98  112  127
  36   44   53   63   74   86   99  113  128  144
  45   54   64   75   87  100  114  129  145  162
  55   65   76   88  101  115  130  146  163  181
		

References

  • Suggested by correspondence with Michael Somos.
  • R. Honsberger, "Ingenuity in Mathematics", Table 10.4 on page 87.

Crossrefs

A self-inverse permutation of the natural numbers.
Cf. A056011 (boustrophedon).
Cf. A061579.

Programs

  • Haskell
    a038722 n = a038722_list !! (n-1)
    a038722_list = concat a038722_tabl
    a038722_tabl = map reverse a000027_tabl
    a038722_row n = a038722_tabl !! (n-1)
    -- Reinhard Zumkeller, Nov 08 2013
  • Mathematica
    (* Program generates dispersion array T of the increasing sequence f[n] *)
    r=40; r1=12; c=40; c1=12; f[n_] := Floor[n+1/2+Sqrt[2n]]
      (* complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]]
    (* A038722 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A038722 sequence *)
     (* Clark Kimberling, Jun 06 2011, corrected Jan 26 2025 *)
    Table[ n, {m, 12}, {n, m (m + 1)/2, m (m - 1)/2 + 1, -1}] // Flatten (* or *)
    Table[ Ceiling[(Sqrt[8 n + 1] - 1)/2]^2 - n + 1, {n, 78}] (* Robert G. Wilson v, Jun 27 2014 *)
    With[{nn=20},Reverse/@TakeList[Range[(nn(1+nn))/2],Range[nn]]//Flatten] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Dec 14 2017 *)
  • PARI
    a(n)=local(t=floor(1/2+sqrt(2*n))); if(n<1, 0, t^2-n+1) /* Paul D. Hanna */
    

Formula

a(n) = (sqrt(2n-1) - 1/2)*(sqrt(2n-1) + 3/2) - n + 2 = A061579(n-1) + 1. Seen as a square table by antidiagonals, T(n, k) = k + (n+k-1)*(n+k-2)/2, i.e., the transpose of A000027 as a square table.
G.f.: g(x) = (x/(1-x))*(psi(x) - x/(1-x) + 2*Sum_{k>=0} k*x^(k*(k+1)/2)) where psi(x) = Sum_{k>=0} x^(k*(k+1)/2) = (1/2)*x^(-1/8)*theta_2(0,x^(1/2)) is a Ramanujan theta function. - Hieronymus Fischer, Aug 08 2007
a(n) = floor(sqrt(2*n) + 1/2)^2 - n + 1. - Clark Kimberling, Jun 05 2011; corrected by Paul D. Hanna, Jun 27 2011
From Hieronymus Fischer, Apr 30 2012: (Start)
a(n) = a(n-1)-1, if a(n-1)-1 > 0 is not in the set {a(k)| 1<=k
a(n) = n for n = 2k(k+1)+1, k >= 0.
a(n+1) = (m+2)(m+3)/2, if 8a(n)-7 is a square of an odd number, otherwise a(n+1) = a(n)-1, where m = (sqrt(8a(n)-7)-1)/2.
a(n) = ceiling((sqrt(8n+1)-1)/2)^2 - n + 1. (End)
G.f. as rectangular array: x*y*(1 - (1 + x)*y + (1 - x + x^2)*y^2)/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Dec 25 2022

A122856 Expansion of f(x, x^5)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 3, 2, 0, 0, 0, 4, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 2, 0, 0, 2, 2, 0, 2, 4, 1, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 4, 2, 0, 0, 0, 4, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 2, 4, 0, 0, 2, 2, 0, 0, 2, 0, 0, 4, 2, 2, 0, 0, 4, 0, 0, 2
Offset: 0

Author

Michael Somos, Sep 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + 2*x^13 + ...
G.f. = q^2 + 2*q^5 + q^8 + 2*q^17 + 2*q^20 + 2*q^26 + 2*q^29 + q^32 + ...
		

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = 3 n + 2}, Sum[ KroneckerSymbol[ -4, d], {d, Divisors@m}]]]; (* Michael Somos, Nov 14 2011 *)
    QP = QPochhammer; s = (QP[q^2]^2*QP[q^3]*(QP[q^12]/(QP[q]*QP[q^4]*QP[q^6]) ))^2 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x^(1/3)] - EllipticTheta[ 3, 0, x^3])^2 / (4 x^(2/3)), {x, 0, n}]; (* Michael Somos, Jan 19 2017 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)])^2 / (2 x^(3/4)), {x, 0, n}]; (* Michael Somos, Jan 19 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 3*n+2; sumdiv(n, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)))^2, n))};

Formula

Expansion of (chi(x) * psi(-x^3))^2 in powers of x where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-2/3) * (eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)))^2 in powers of q.
Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, -2, ...].
a(4*n + 3) = a(8*n + 4) = 0. a(n) = A002654(3*n + 2) = A035154(3*n + 2) = A113446(3*n + 2). a(2*n) = A122865(n). a(4*n + 1) = 2 * A121444(n). a(4*n + 2) = A122856(n).
a(n) = (-1)^n * A258278(n). Convolution square of A089801.

A122865 Expansion of chi(x) * phi(x^3) * psi(-x^3) in powers of x where chi(), phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 2, 2, 1, 0, 0, 3, 0, 0, 2, 2, 2, 0, 0, 1, 2, 0, 2, 2, 1, 0, 0, 2, 0, 0, 2, 4, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 1, 0, 0, 4, 0, 2, 0, 0, 4, 2, 0, 0, 2, 2, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 2, 4, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 4, 0, 1, 0
Offset: 0

Author

Michael Somos, Sep 15 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 2*x^3 + 2*x^4 + x^5 + 3*x^8 + 2*x^11 + 2*x^12 + 2*x^13 + ...
G.f. = q + q^4 + 2*q^10 + 2*q^13 + q^16 + 3*q^25 + 2*q^34 + 2*q^37 + ...
		

Programs

  • Mathematica
    phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q]) * InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[ 2, 0, q^(1/2)]; s = Series[ chi[q]*phi[q^3]*psi[-q^3], {q, 0, 104}]; a[n_] := Coefficient[s, q, n];
    (* or *) a[n_] := If[n == 0, 1, Sum[Boole[Mod[d, 4] == 1] - Boole[Mod[d, 4] == 3], {d, Divisors[3n+1]}]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015, after PARI code *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 3 n + 1, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Sep 02 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A)^4 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if(n <0, 0, n = 3*n+1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p==3, -2*(-1)^e, p%4==1, e+1, 1-e%2)))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 3*n+1; sumdiv(n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Apr 19 2007 */

Formula

Expansion of chi(x) * f(x^3) * f(-x^6) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 02 2015
Expansion of q^(-1/3) * eta(q^2)^2 * et(q^6)^4 / (eta(q) * eta(q^3) * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [1, -1, 2, 0, 1, -4, 1, 0, 2, -1, 1, -2, ...]. - Michael Somos, Apr 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A258228. - Michael Somos, Sep 02 2015
a(n) = A002654(3*n + 1) = A035154(3*n + 1) = A113446(3*n + 1) = A122864(3*n + 1) = A163746(3*n + 1).
a(n) = (-1)^n * A258277(n). a(2*n + 1) = A122856(n). - Michael Somos, Sep 02 2015
a(4*n) = A002175(n). a(4*n + 2) = 0. - Michael Somos, Jan 19 2017

A007245 McKay-Thompson series of class 3C for the Monster group.

Original entry on oeis.org

1, 248, 4124, 34752, 213126, 1057504, 4530744, 17333248, 60655377, 197230000, 603096260, 1749556736, 4848776870, 12908659008, 33161242504, 82505707520, 199429765972, 469556091240, 1079330385764, 2426800117504, 5346409013164
Offset: 0

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 248*x + 4124*x^2 + 34752*x^3 + 213126*x^4 + 1057504*x^5 + 4530744*x^6 + ...
T3C = 1/q + 248*q^2 + 4124*q^5 + 34752*q^8 + 213126*q^11 + 1057504*q^14 + ...
		

References

  • G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000521.

Programs

  • Mathematica
    n = 21; f[u_, v_] = u^3 + v^3 - 54000 + 495*u*v - (u*v)^2;
    a[x_] = Sum[c[k] x^k, {k, 0, n}]; b[x_] = a[x^3]/x;
    eq[1] = # == 0 & /@ CoefficientList[x^6 f[b[x], b[x^2]], x] // Union // Rest; s[1] = Solve[eq[1][[1]], c[0]] // Last; Do[eq[k] = Rest[eq[k-1]] /. s[k-1] ; s[k] = Solve[eq[k][[1]], c[k-1]] // Last, {k, 2, n}]; Table[c[k], {k, 0, n-1}] /. Flatten @ Table[s[k], {k, 1, n}]
    (* Jean-François Alcover, May 17 2011, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2]^8 + 256 q QPochhammer[ q, q^2]^-16, {q, 0, n}]; (* Michael Somos, Jun 15 2013 *)
    CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24) / (256*QPochhammer[-1, x]^8), {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
    eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 55; f1A := (eta[q]/eta[q^2] )^24*(1 + 256*(eta[q^2]/eta[q])^24)^3; a:= CoefficientList[Series[(q*f1A + O[q]^nmax)^(1/3), {q,0,50}], q]; Table[a[[n]], {n,1,50}] (* G. C. Greubel, May 09 2018 *)
    a[ n_] := SeriesCoefficient[ With[ {m = InverseEllipticNomeQ[q]}, (1 + 14 m + m^2) / (1 - m) / (4 m (1 - m))^(1/3)] 4 q^(1/3), {q, 0, n}] // Simplify; (* Michael Somos, Sep 30 2019 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, n, 240 * sigma(k, 3) * x^k, 1 + x * O(x^n)) / eta(x + x * O(x^n))^8, n))}; /* Michael Somos, Apr 17 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (x * ellj( x + x^2 * O(x^n)))^(1/3), n))}; /* Michael Somos, May 26 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^8 + 256 * x * (eta(x^2 + A) / eta(x + A))^16, n))}; /* Michael Somos, Jun 15 2013 */

Formula

In the notation of Gunning, Lectures on Modular Forms, pp. 53-54, expand E_2(z) / Delta(z)^(1/3).
Given g.f. A(x), then B(q) = A(q^3) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^3 + v^3 - 54000 + 495 * u*v - (u*v)^2. - Michael Somos, Apr 29 2006
Expansion of (phi(-x)^8 - (2 * phi(-x) * phi(x))^4 + 16 * phi(x)^8) / f(-x)^8 in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of chi(-x)^8 + 256 * x / chi(-x)^16 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Jun 15 2013
Expansion of q^(1/3) * (eta(q) / eta(q^2))^8 + 256 * (eta(q^2) / eta(q))^16 in powers of q. - Michael Somos, Jun 15 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 15 2013
a(n) ~ exp(4*Pi*sqrt(n/3)) / (sqrt(2)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Dec 04 2015
Convolution cube is A000521. (The modular j-function)- Michael Somos, Sep 30 2019
Previous Showing 31-40 of 1364 results. Next