cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A379497 Dirichlet inverse of A046897, where A046897 is the sum of divisors of n that are not divisible by 4.

Original entry on oeis.org

1, -3, -4, 6, -6, 12, -8, -12, 3, 18, -12, -24, -14, 24, 24, 24, -18, -9, -20, -36, 32, 36, -24, 48, 5, 42, 0, -48, -30, -72, -32, -48, 48, 54, 48, 18, -38, 60, 56, 72, -42, -96, -44, -72, -18, 72, -48, -96, 7, -15, 72, -84, -54, 0, 72, 96, 80, 90, -60, 144, -62, 96, -24, 96, 84, -144, -68, -108, 96, -144, -72, -36
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2025

Keywords

Crossrefs

Cf. A046897.

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, -p-1, If[e == 2, p, 0]]; f[2, e_] := -3*(-2)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
  • PARI
    A046897(n) = if(n<1, 0, sumdiv(n, d, if(d%4, d, 0)));
    memoA379497 = Map();
    A379497(n) = if(1==n,1,my(v); if(mapisdefined(memoA379497,n,&v), v, v = -sumdiv(n,d,if(dA046897(n/d)*A379497(d),0)); mapput(memoA379497,n,v); (v)));
    
  • PARI
    g(p, e) = if(p == 2, -3*(-2)^(e-1), if(e == 1, -p-1, e == 2, p, e > 2, 0));
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; g(p, e));} \\ Amiram Eldar, Jan 02 2025

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA046897(n/d) * a(d).
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = -3*(-2)^(e-1), and for an odd prime p, a(p) = -(p+1), a(p^2) = p, and a(p^e) = 0 for e >= 3.
Dirichlet g.f.: 1/((1 - 1/4^(s-1)) * zeta(s-1) * zeta(s)). (End)

A046898 Partial sums of A046897.

Original entry on oeis.org

1, 4, 8, 11, 17, 29, 37, 40, 53, 71, 83, 95, 109, 133, 157, 160, 178, 217, 237, 255, 287, 323, 347, 359, 390, 432, 472, 496, 526, 598, 630, 633, 681, 735, 783, 822, 860, 920, 976, 994, 1036, 1132, 1176, 1212, 1290, 1362, 1410, 1422, 1479, 1572, 1644, 1686, 1740, 1860
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A046897.

Programs

  • Mathematica
    Accumulate[DivisorSum[#1, # &, Mod[#, 4] != 0 &] & /@ Range[50]] (* Jayanta Basu, Jun 30 2013 *)
  • PARI
    my(N=60, q='q+O('q^N)); Vec(sum(k=1, N, k*q^k/(1+(-q)^k))/(1-q)) \\ Seiichi Manyama, Jun 21 2024

Formula

G.f.: 1/(1 - q) * Sum_{k>=1} k * q^k / (1 + (-q)^k). - Seiichi Manyama, Jun 21 2024

Extensions

Offset changed from 0 to 1 by Seiichi Manyama, Jun 21 2024

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A000118 Number of ways of writing n as a sum of 4 squares; also theta series of four-dimensional cubic lattice Z^4.

Original entry on oeis.org

1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144, 96, 96, 112, 192, 192, 24, 144, 312, 160, 144, 256, 288, 192, 96, 248, 336, 320, 192, 240, 576, 256, 24, 384, 432, 384, 312, 304, 480, 448, 144, 336, 768, 352, 288, 624, 576, 384, 96, 456, 744, 576, 336, 432, 960, 576, 192
Offset: 0

Views

Author

Keywords

Comments

a^2 + b^2 + c^2 + d^2 is one of Ramanujan's 54 universal quaternary quadratic forms. - Michael Somos, Apr 01 2008
a(n) is also the number of quaternions q = a + bi + cj + dk, where a, b, c, d are integers, such that a^2 + b^2 + c^2 + d^2 = n (i.e., so that n is the norm of q). These are Lipschitz integer quaternions. - Rick L. Shepherd, Mar 27 2009
Number 5 and 35 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018
This is the convolution square of A004018. - Pierre Abbat, May 15 2023

Examples

			G.f. = 1 + 8*q + 24*q^2 + 32*q^3 + 24*q^4 + 48*q^5 + 96*q^6 + 64*q^7 + 24*q^8 + ...
a(1)=8 counts 1 = 1^2 + 0^2 + 0^2 + 0^2 = 0^2 + 1^2 + 0^2 + 0^2 = 0^2 + 0^2 + 1^2 + 0^2 = 0^2 + 0^2 + 0^2 + 1^2 and 4 more sums where 1^2 is replaced by (-1)^2. - _R. J. Mathar_, May 16 2023
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, ch. 8, pp. 231-2.
  • J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, Springer-Verlag, p. 108, Eq. (49).
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.28). See also top of p. 94.
  • E. Freitag and R. Busam, Funktionentheorie 1, 4. Auflage, Springer, 2006, p. 392.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314, Theorem 386.
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of integers, Chapman & Hall/CRC, 2006, p. 29.
  • S. Ramanujan, Collected Papers, Chap. 20, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1917) 11-21).

Crossrefs

Row d=4 of A122141 and of A319574, 4th column of A286815.
For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1, 2, 3, 4, 5, 6, 7, 8, 12, see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

  • Haskell
    a000118 0 = 1
    a000118 n = 8 * a046897 n  -- Reinhard Zumkeller, Aug 12 2015
    
  • Julia
    # JacobiTheta3 is defined in A000122.
    A000118List(len) = JacobiTheta3(len, 4)
    A000118List(57) |> println # Peter Luschny, Mar 12 2018
    
  • MATLAB
    a(n) = 8 * sum(find(mod(n,1:n)==0 & mod(1:n,4))) + (n==0) % David Mellinger, Aug 04 2025
  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 57); A[1] + 8*A[2]; /* Michael Somos, Aug 21 2014 */
    
  • Maple
    (add(q^(m^2),m=-10..10))^4; seq(coeff(%,q,n), n=0..50);
    # Alternative:
    A000118list := proc(len) series(JacobiTheta3(0, x)^4, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000118list(57); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[4, n], {n, 0, 46}]
    a[ n_] :=  SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 8 Sum[ If[ Mod[ d, 4] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Feb 20 2015 *)
    QP = QPochhammer; CoefficientList[QP[-q]^8/QP[q^2]^4 + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 8 * sumdiv( n, d, if( d%4, d)))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2))^4, n))}; /* Michael Somos, Apr 01 2008 */
    
  • PARI
    q='q+O('q^66); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4) /* Joerg Arndt, Apr 08 2013 */
    
  • PARI
    a(n) = 8*sigma(n) - if (n % 4, 0, 32*sigma(n/4)); \\ Michel Marcus, Jul 13 2016
    
  • Python
    from sympy import divisors
    def a(n): return 1 if n==0 else 8*sum(d for d in divisors(n) if d%4 != 0)
    print([a(n) for n in range(57)]) # Michael S. Branicky, Jan 08 2021
    
  • Python
    from sympy import divisor_sigma
    def A000118(n): return 1 if n == 0 else 8*divisor_sigma(n) if n % 2 else 24*divisor_sigma(int(bin(n)[2:].rstrip('0'),2)) # Chai Wah Wu, Jun 27 2022
    
  • Sage
    A = ModularForms( Gamma0(4), 2, prec=57) . basis(); A[0] + 8*A[1]; # Michael Somos, Jun 12 2014
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*4)
    Q.representation_number_list(60) # Peter Luschny, Jun 20 2014
    

Formula

G.f.: theta_3(q)^4 = (Product_{n>=1} (1-q^(2n))*(1+q^(2n-1))^2)^4 = eta(-q)^8/eta(q^2)^4; eta = Dedekind's function.
a(n) = 8*sigma(n) - 32*sigma(n/4) for n > 0, where the latter term is 0 if n is not a multiple of 4.
Euler transform of period 4 sequence [8, -12, 8, -4, ...]. - Michael Somos, Dec 16 2002
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2). - Michael Somos, Nov 02 2006
G.f. is a period 1 Fourier series which satisfies f(-1/(4*t)) = 4*(t/i)^2*f(t) where q = exp(2*Pi*i*t). - Michael Somos, Jan 25 2008
For n > 0, a(n)/8 is multiplicative and a(p^n)/8 = 1 + p + p^2 + ... + p^n for p an odd prime, a(2^n)/8 = 1 + 2 for n > 0.
a(n) = 8*A000203(n/A006519(n))*(2 + (-1)^n). - Benoit Cloitre, May 16 2002
G.f.: 1 + 8*Sum_{k>0} x^k / (1 + (-x)^k)^2 = 1 + 8*Sum_{k>0} k * x^k / (1 + (-x)^k).
G.f. = s(2)^20/(s(1)*s(4))^8, where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
Fine gives another explicit formula for a(n) in terms of the divisors of n.
a(n) = 8*A046897(n), n > 0. - Ralf Stephan, Apr 02 2003
A096727(n) = (-1)^n * a(n). a(2*n) = A004011(n). a(2*n + 1) = A005879(n).
Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = 8*(1-4^(1-s))*zeta(s)*zeta(s-1). [Ramanu. J. 7 (2003) 95-127, eq (3.2)]. - R. J. Mathar, Jul 02 2012
Average value is (Pi^2/2)*n + O(sqrt(n)). - Charles R Greathouse IV, Feb 17 2015
From Wolfdieter Lang, Jan 14 2016: (Start)
For n >= 1: a(n) = 8*Sum_{d | n} b(d)*d, with b(d) = 1 if d/4 is not an integer else 0. See, e.g., the Freitag-Busam reference, p. 392.
For n >= 1: a(n) = 8*sigma(n) if n is odd else 24*sigma(m(n)), where m(n) is the largest odd divisor of n (see A000265), and sigma is given in A000203. See the Moreno-Wagstaff reference, Theorem 2. 6 (Jacobi), p. 29. (End)
a(n) = (8/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A001935 Number of partitions with no even part repeated; partitions of n in which no parts are multiples of 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 29, 38, 50, 64, 82, 105, 132, 166, 208, 258, 320, 395, 484, 592, 722, 876, 1060, 1280, 1539, 1846, 2210, 2636, 3138, 3728, 4416, 5222, 6163, 7256, 8528, 10006, 11716, 13696, 15986, 18624, 21666, 25169, 29190, 33808, 39104, 45164
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n where no part appears more than three times.
a(n) satisfies Euler's pentagonal number (A001318) theorem, unless n is in A062717 (see Fink et al.).
Also number of partitions of n in which the least part and the differences between consecutive parts is at most 3. Example: a(5)=6 because we have [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1] and [1,1,1,1,1]. - Emeric Deutsch, Apr 19 2006
Equals A000009 convolved with its aerated variant, = polcoeff A000009 * A000041 * A010054 (with alternate signs). - Gary W. Adamson, Mar 16 2010
Equals left border of triangle A174715. - Gary W. Adamson, Mar 27 2010
The Cayley reference is actually to A083365. - Michael Somos, Feb 24 2011
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A000009 and A035457. - Vaclav Kotesovec, Aug 23 2015
Convolution inverse is A082303. - Michael Somos, Sep 30 2017
The g.f. in the form Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1-x^k) = Sum_{n >= 0} x^(n*(n+1)/2) * Product_{k = 1..n} (1+x^k)/(1+x^k-2*x^k) == Sum_{n >= 0} x^(n*(n+1)/2) (mod 2). It follows that a(n) is odd iff n = k*(k + 1)/2 for some nonnegative integer k. Cf. A333374. - Peter Bala, Jan 08 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 16*x^8 + 22*x^9 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 4*q^33 + 6*q^41 + 9*q^49 + 12*q^57 + 16*q^65 + 22*q^73 + ...
a(5)=6 because we have [5], [4,1], [3,2], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.2).
  • M. D. Hirschhorn, The Power of q, Springer, 2017. See ped page 303ff.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 241.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A010054. - Gary W. Adamson, Mar 16 2010
Cf. A174715. - Gary W. Adamson, Mar 27 2010
Cf. A082303.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Haskell
    a001935 = p a042968_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Sep 02 2012
  • Maple
    g:=product((1+x^j)*(1+x^(2*j)),j=1..50): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..48); # Emeric Deutsch, Apr 19 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(irem(d, 4)=0, 0, d), d=divisors(j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 24 2015
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, Pi/4, q^(1/2)] / (16 q)^(1/8), {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    CoefficientList[Series[Product[1+x^j+x^(2j)+x^(3j), {j,1,48}], {x,0,48}],x] (* Jean-François Alcover, May 26 2011, after Jon Perry *)
    QP = QPochhammer; CoefficientList[QP[q^4]/QP[q] + O[q]^50, q] (* Jean-François Alcover, Nov 24 2015 *)
    a[0] = 1; a[n_] := a[n] = Sum[a[n-j] DivisorSum[j, If[Divisible[#, 4], 0, #]&], {j, 1, n}]/n; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 49}] (* Robert Price, Jul 28 2020 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint( 8*n + 1) - 1)\2, prod(i=1, k, (1 + x^i) / (x^-i - 1), 1 + x * O(x^n))), n))}; /* Michael Somos, Jun 01 2004 */
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/(1+(-x)^m+x*O(x^n))/m)),n)} \\ Paul D. Hanna, Jul 24 2013
    

Formula

Euler transform of period 4 sequence [ 1, 1, 1, 0, ...].
Expansion of q^(-1/8) * eta(q^4) / eta(q) in powers of q. - Michael Somos, Mar 19 2004
Expansion of psi(-x) / phi(-x) = psi(x) / phi(-x^2) = psi(x^2) / psi(-x) = chi(x) / chi(-x^2)^2 = 1 / (chi(x) * chi(-x)^2) = 1 / (chi(-x) * chi(-x^2)) = f(-x^4) / f(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 08 2011
G.f.: Product(j>=1, 1 + x^j + x^(2*j) + x^(3*j)). - Jon Perry, Mar 30 2004
G.f.: Product_{k>=1} (1+x^k)^(2-k%2). - Jon Perry, May 05 2005
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k-1)) = 1 + Sum_{k>0}(Product_{i=1..k} (x^i + 1) / (x^-i - 1)).
G.f.: Sum_{n>=0} ( x^(n*(n+1)/2) * Product_{k=1..n} (1+x^k)/(1-x^k) ). - Joerg Arndt, Apr 07 2011
G.f.: P(x^4)/P(x) where P(x) = Product_{k>=1} 1-x^k. - Joerg Arndt, Jun 21 2011
A083365(n) = (-1)^n a(n). Convolution square is A001936. a(n) = A098491(n) + A098492(n). a(2*n) = A081055(n). a(2*n + 1) = A081056(n).
G.f.: (1+ 1/G(0))/2, where G(k) = 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jul 03 2013
G.f.: exp( Sum_{n>=1} (x^n/n) / (1 + (-x)^n) ). - Paul D. Hanna, Jul 24 2013
a(n) ~ Pi * BesselI(1, sqrt(8*n + 1)*Pi/4) / (2*sqrt(8*n + 1)) ~ exp(Pi*sqrt(n/2)) / (4 * (2*n)^(3/4)) * (1 + (Pi/(16*sqrt(2)) - 3/(4*Pi*sqrt(2))) / sqrt(n) + (Pi^2/1024 - 15/(64*Pi^2) - 15/128) / n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (256 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082303. - Michael Somos, Sep 30 2017

Extensions

More terms from James Sellers

A122141 Array: T(d,n) = number of ways of writing n as a sum of d squares, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 1, 6, 4, 0, 1, 8, 12, 0, 2, 1, 10, 24, 8, 4, 0, 1, 12, 40, 32, 6, 8, 0, 1, 14, 60, 80, 24, 24, 0, 0, 1, 16, 84, 160, 90, 48, 24, 0, 0, 1, 18, 112, 280, 252, 112, 96, 0, 4, 2, 1, 20, 144, 448, 574, 312, 240, 64, 12, 4, 0, 1, 22, 180, 672, 1136, 840, 544, 320, 24, 30, 8, 0
Offset: 1

Views

Author

R. J. Mathar, Oct 29 2006

Keywords

Comments

This is the transpose of the array in A286815.
T(d,n) is divisible by 2d for any n != 0 iff d is a power of 2. - Jianing Song, Sep 05 2018

Examples

			Array T(d,n) with rows d = 1,2,3,... and columns n = 0,1,2,3,... reads
  1  2   0   0    2    0     0     0     0     2      0 ...
  1  4   4   0    4    8     0     0     4     4      8 ...
  1  6  12   8    6   24    24     0    12    30     24 ...
  1  8  24  32   24   48    96    64    24   104    144 ...
  1 10  40  80   90  112   240   320   200   250    560 ...
  1 12  60 160  252  312   544   960  1020   876   1560 ...
  1 14  84 280  574  840  1288  2368  3444  3542   4424 ...
  1 16 112 448 1136 2016  3136  5504  9328 12112  14112 ...
  1 18 144 672 2034 4320  7392 12672 22608 34802  44640 ...
  1 20 180 960 3380 8424 16320 28800 52020 88660 129064 ...
		

Crossrefs

Cf. A000122 (1st row), A004018 (2nd row), A005875 (3rd row), A000118 (4th row), A000132 (5th row), A000141 (6th row), A008451 (7th row), A000143 (8th row), A008452 (9th row), A000144 (10th row), A008453 (11th row), A000145 (12th row), A276285 (13th row), A276286 (14th row), A276287 (15th row), A000152 (16th row).
Cf. A005843 (2nd column), A046092 (3rd column), A130809 (4th column).
Cf. A010052 (1st row divides 2), A002654 (2nd row divides 4), A046897 (4th row divides 8), A008457 (8th row divides 16), A302855 (16th row divides 32), A302857 (32nd row divides 64).

Programs

  • Maple
    A122141 := proc(d,n) local i,cnts ; cnts := 0 ; for i from -trunc(sqrt(n)) to trunc(sqrt(n)) do if n-i^2 >= 0 then if d > 1 then cnts := cnts+procname(d-1,n-i^2) ; elif n-i^2 = 0 then cnts := cnts+1 ; fi ; fi ; od ; cnts ;
    end:
    for diag from 1 to 14 do for n from 0 to diag-1 do d := diag-n ; printf("%d,",A122141(d,n)) ; od ; od;
    # second Maple program:
    A:= proc(d, n) option remember; `if`(n=0, 1, `if`(n<0 or d<1, 0,
          A(d-1, n) +2*add(A(d-1, n-j^2), j=1..isqrt(n))))
        end:
    seq(seq(A(h-n, n), n=0..h-1), h=1..14); # Alois P. Heinz, Jul 16 2014
  • Mathematica
    Table[ SquaresR[d - n, n], {d, 1, 12}, {n, 0, d - 1}] // Flatten (* Jean-François Alcover, Jun 13 2013 *)
    A[d_, n_] := A[d, n] = If[n==0, 1, If[n<0 || d<1, 0, A[d-1, n] + 2*Sum[A[d-1, n-j^2], {j, 1, Sqrt[n]}]]]; Table[A[h-n, n], {h, 1, 14}, {n, 0, h-1}] // Flatten (* Jean-François Alcover, Feb 28 2018, after Alois P. Heinz *)
  • Python
    from sympy.core.power import isqrt
    from functools import cache
    @cache
    def T(d, n):
      if n == 0: return 1
      if n < 0 or d < 1: return 0
      return T(d-1, n) + sum(T(d-1, n-(j**2)) for j in range(1, isqrt(n)+1)) * 2  # Darío Clavijo, Feb 06 2024

Formula

T(n,n) = A066535(n). - Alois P. Heinz, Jul 16 2014

A079006 Expansion of q^(-1/4) * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^2 in powers of q.

Original entry on oeis.org

1, -2, 5, -10, 18, -32, 55, -90, 144, -226, 346, -522, 777, -1138, 1648, -2362, 3348, -4704, 6554, -9056, 12425, -16932, 22922, -30848, 41282, -54946, 72768, -95914, 125842, -164402, 213901, -277204, 357904, -460448, 590330, -754368, 960948, -1220370
Offset: 0

Views

Author

Michael Somos, Dec 22 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The Lagrange series reversion of Sum_{n >= 1} a(n-1)*x^n is Sum_{n >= 1} A002103(n-1)*x^n. See the example in A002103. - Wolfdieter Lang, Jul 09 2016

Examples

			G.f. A(x) = 1 - 2*x + 5*x^2 - 10*x^3 + 18*x^4 - 32*x^5 + 55*x^6 - 90*x^7 + 144*x^8 + ...
G.f. B(q) = q * A(q^4) = q - 2*q^5 + 5*q^9 - 10*q^13 + 18*q^17 - 32*q^21 + 55*q^25 - 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[(1 + x^(k + 1)) / (1 + x^k), {k, 1, n, 2}]^2, {x, 0, n}]; (* Michael Somos, Jul 08 2011 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ[ q]}, SeriesCoefficient[ (m / 16 / q)^(1/4), {q, 0, n}]]; (* Michael Somos, Jul 08 2011 *)
    QP = QPochhammer; s = (QP[q]*(QP[q^4]^2/QP[q^2]^3))^2 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k))^4 / (1+x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^2 / QPochhammer[ -x]^2, {x, 0, n}]; (* Michael Somos, Apr 19 2017 *)
  • PARI
    {a(n) = my(N, A); if( n<0, 0, N = (sqrtint(16*n + 1) + 1)\2; A = contfracpnqn( matrix(2, N, i, j, if( i==1, if( j<2, 1 + O(x^(N^2 + N)), (x^(j-1) + x^(3*j - 3))^2), 1 - x^(4*j - 2)))); polcoeff( A[2,1] / A[1,1], 4*n))}; /* Michael Somos, Sep 01 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m = 1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x*A^2))); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^2, n))};

Formula

a(n) = (2/n)*Sum_{k=1..n} (-1)^k*A046897(k)*a(n-k). - Vladeta Jovovic, Dec 24 2002
Expansion of q^(-1/4) * (1/2) * k^(1/2) in powers of q, where k^2 is the parameter and q the Jacobi nome of elliptic functions.
Expansion of (1/(2*q)) * (1 - sqrt(k')) / (1 + sqrt(k')) in powers of q^4, where k'^2 is the complementary parameter and q the Jacobi nome of elliptic functions. See the Fricke reference.
Expansion of psi(x^2) / phi(x) = psi(x)^2 / phi(x)^2 = psi(x^2)^2 / psi(x)^2 = psi(-x)^2 / phi(-x^2)^2 = chi(-x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x^2)^2) = 1 / (chi(x)^4 * chi(-x)^2) = f(-x^4)^2 / f(x)^2 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [-2, 4, -2, 0, ...].
G.f. A(x) satisfies A(x)^2 = A(x^2) / (1 + 4 * x * A(x^2)^2). - Michael Somos, Mar 19 2004
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 * (1 + 4 * v^2) - v. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u3 * (u6 + u2)^2 - u2*u6. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k-1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - (-x)^k))^2.
Expansion of continued fraction 1 / (1 - x^2 + (x^1 + x^3)^2 / (1 - x^6 + (x^2 + x^6)^2 / (1 - x^10 + (x^3 + x^9)^2 / ...))) in powers of x^4. - Michael Somos, Sep 01 2005
Given g.f. A(x), then B(q) = 2 * q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (1 - u^4) * (1 - v^4) - (1 - u*v)^4 . - Michael Somos, Jan 01 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A189925.
Convolution inverse of A029839. Convolution square of A083365. a(n) = (-1)^n * A001936(n).
G.f.: 1/Q(0), where Q(k)= 1 - x^(k+1/2) + (x^((k+1)/4) + x^((3*k+3)/4))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n)) / (2^(7/2)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
Given g.f. A(x), and B(x) is the g.f. for A008441, then A(x) = B(x^2) / B(x) and A(x) * A(x^2) * A(x^4) * ... = 1 / B(x). - Michael Somos, Apr 20 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 + x^1)^2 / (1 - x^3 + x^2*(1 + x^2)^2 / (1 - x^5 + x^3*(1 + x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
a(n) = A208933(4*n+1) - A215348(4*n+1) (conjectured). - Thomas Baruchel, May 14 2018
A(x^4) = (1/(m*x)) * ( chi(x)^m - chi(-x)^m ) / ( chi(x)^m + chi(-x)^m ) at m = 2, where chi(x) = Product_{i >= 0} (1 + x^(2*i+1)) is the g.f. of A000700. The formula gives generating functions related to A092869 when m = 1 and A001938 (also A093160) when m = 4. - Peter Bala, Sep 23 2023

A093160 Expansion of q^(-1/2) * (eta(q^4) / eta(q))^4 in powers of q.

Original entry on oeis.org

1, 4, 14, 40, 101, 236, 518, 1080, 2162, 4180, 7840, 14328, 25591, 44776, 76918, 129952, 216240, 354864, 574958, 920600, 1457946, 2285452, 3548550, 5460592, 8332425, 12614088, 18953310, 28276968, 41904208, 61702876, 90304598
Offset: 0

Views

Author

Michael Somos, Mar 26 2004, Apr 17 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 101*x^4 + 236*x^5 + 518*x^6 + 1080*x^7 + ...
G.f. = q + 4*q^3 + 14*q^5 + 40*q^7 + 101*q^9 + 236*q^11 + 518*q^13 + ...
		

References

  • A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 381, Section 488.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (Product[ 1 + x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}])^4, {x, 0, n}];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[m] / (4 Sqrt[1 - m]), {q, 0, n + 1/2}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ m^(1/4) / (2 (1 - Sqrt @ m)), {q, 0, n/2 + 1/4 }]];
    s = (QPochhammer[q^4]/QPochhammer[q])^4 + O[q]^30; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = A * (1 + 16*A); A = 8*A2 + (1 + 32*A) * sqrt(A2)); polcoeff( sqrt(A/x), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^4, n))};

Formula

G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^4.
Expansion of q^(-1/2) * k / (4 * k') in powers of q where q is Jacobi's nome and k is the elliptic modulus.
Expansion of q^(-1/4) * k^(1/2) / (2 * (1 - k)) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus.
Expansion of (psi(x^2) / phi(-x))^2 = (psi(x) / phi(-x^2))^4 = (psi(-x) / phi(-x))^4 = (psi(x^2) / psi(-x))^4 = (chi(x) / chi(-x^2)^2)^4 = ( chi(x) * chi(-x)^2)^-4 = (chi(-x) * chi(-x^2))^-4 = (f(-x^4) / f(-x))^4 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 4 sequence [ 4, 4, 4, 0, ...].
Given g.f. A(x), then B(x) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.
G.f. A(q) satisfies A(q) = sqrt(A(-q^2)) / (1 - 4*q*A(-q^2)); together with limit_{n->infinity} A(x^n) = 1 this gives a fast algorithm to compute the series. [Joerg Arndt, Aug 06 2011]
A001938(n) = (-1)^n * a(n). Convolution inverse of A112143.
a(n) ~ exp(sqrt(2*n)*Pi) / (32 * 2^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017

A082303 McKay-Thompson series of class 32e for the Monster group.

Original entry on oeis.org

1, -1, -1, 0, 1, 0, -1, 1, 2, -1, -2, 1, 2, -1, -3, 1, 4, -2, -5, 2, 5, -2, -6, 3, 8, -4, -9, 4, 10, -4, -12, 6, 15, -7, -17, 7, 19, -8, -22, 10, 26, -12, -30, 13, 33, -14, -38, 17, 45, -21, -51, 22, 56, -24, -64, 29, 74, -33, -83, 36, 92, -40, -104, 46, 119, -53, -133, 58
Offset: 0

Views

Author

Michael Somos, Apr 08 2003

Keywords

Comments

Number 4 of the 130 identities listed in Slater 1952. - Michael Somos, Aug 21 2015

Examples

			G.f. = 1 - x - x^2 + x^4 - x^6 + x^7 + 2*x^8 - x^9 - 2*x^10 + x^11 + 2*x^12 + ...
T32e = 1/q - q^7 - q^15 + q^31 - q^47 + q^55 + 2*q^63 - q^71 - 2*q^79 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^4], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] / QPochhammer[ -x^2, x^2], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (16 (1 - m)/m)^(1/8), {q, 0, n - 1/8}]]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 2, n, 2}], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {-x^2}, x^2, x], {x, 0, n}]; (* Michael Somos, Aug 21 2015 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^k^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x^4, x^4, k], {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Aug 21 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^4 + A), n))};
    
  • PARI
    q='q+O('q^66); Vec( eta(q)/eta(q^4) ) \\ Joerg Arndt, Mar 25 2017

Formula

Euler transform of period 4 sequence [ -1, -1, -1, 0, ...].
Expansion of q^(1/8) * eta(q) / eta(q^4) in powers of q.
Given g.f. A(x), then B(q) = (A(q^8) / q)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v + 16) * (u + 16) * u - v^2. - Michael Somos, Jan 09 2005
G.f.: Product_{k>0} (1 - x^k) / (1 - x^(4*k)).
a(n) = (-1)^n * A029838(n).
Convolution square is A082304.
G.f.: 2 - 2/(1+Q(0)), where Q(k)= 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
G.f.: Sum_{k>=0} (-1)^k * q^k^2 * Product_{i=1..k} (1 + x^(2*i - 1)) / (1 - x^(4*i)). - Michael Somos, Aug 21 2015
a(n) = -(1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
abs(a(n)) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

A109506 Expansion of (1 - phi(-q)^4)/ 8 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -3, 4, -3, 6, -12, 8, -3, 13, -18, 12, -12, 14, -24, 24, -3, 18, -39, 20, -18, 32, -36, 24, -12, 31, -42, 40, -24, 30, -72, 32, -3, 48, -54, 48, -39, 38, -60, 56, -18, 42, -96, 44, -36, 78, -72, 48, -12, 57, -93, 72, -42, 54, -120, 72, -24, 80, -90, 60, -72, 62, -96, 104, -3, 84, -144, 68, -54, 96, -144, 72
Offset: 1

Views

Author

Michael Somos, Jun 30 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by xi(n) in Glaisher 1907. - Michael Somos, May 17 2013

Examples

			q - 3*q^2 + 4*q^3 - 3*q^4 + 6*q^5 - 12*q^6 + 8*q^7 - 3*q^8 + 13*q^9 + ...
		

References

  • G. Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed, Chelsea Publishing Co., New York 1959 Part II, p. 346 Exercise XXI(18). MR0121327 (22 #12066).
  • J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 8).

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n Sum[ If[ Mod[ d, 4] == 0, 0, d], {d, Divisors@n}]] (* Michael Somos, May 17 2013 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv( n, d, if( d%4, d)))}
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); -1/8 * polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))}

Formula

Expansion of (1 - eta(q)^8 / eta(q^2)^4) / 8 in powers of q.
a(n) = Sum_{d divides n} (-1)^(n/d + d) * d [Glaisher].
Multiplicative with a(2^e) = -3, if e>0. a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f.: Sum_{k>0} k * (x^k / (1 - x^k) - 6 * x^(2*k) / (1 - x^(2*k)) + 8 * x^(4*k) / (1 - x^(4*k))).
G.f.: Sum_{k>0} -(-x)^k / (1 + x^k)^2 = Sum_{k>0} - k * (-x)^k / (1 + x^k).
a(n) = -(-1)^n * A046897(n). a(n) = -A096727(n) / 8 unless n=0. a(2*n) = -3 * A000593(n). a(2*n + 1) = A008438(n). a(4*n + 1) = A112610(n). a(4*n + 3) = A097723(n).
Dirichlet g.f.: (1 - 1/2^(s-2)) * (1 - 1/2^(s-1)) * zeta(s-1) * zeta(s). - Amiram Eldar, Sep 12 2023
Showing 1-10 of 38 results. Next