A379497 Dirichlet inverse of A046897, where A046897 is the sum of divisors of n that are not divisible by 4.
1, -3, -4, 6, -6, 12, -8, -12, 3, 18, -12, -24, -14, 24, 24, 24, -18, -9, -20, -36, 32, 36, -24, 48, 5, 42, 0, -48, -30, -72, -32, -48, 48, 54, 48, 18, -38, 60, 56, 72, -42, -96, -44, -72, -18, 72, -48, -96, 7, -15, 72, -84, -54, 0, 72, 96, 80, 90, -60, 144, -62, 96, -24, 96, 84, -144, -68, -108, 96, -144, -72, -36
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A046897.
Programs
-
Mathematica
f[p_, e_] := If[e == 1, -p-1, If[e == 2, p, 0]]; f[2, e_] := -3*(-2)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
-
PARI
A046897(n) = if(n<1, 0, sumdiv(n, d, if(d%4, d, 0))); memoA379497 = Map(); A379497(n) = if(1==n,1,my(v); if(mapisdefined(memoA379497,n,&v), v, v = -sumdiv(n,d,if(d
A046897(n/d)*A379497(d),0)); mapput(memoA379497,n,v); (v))); -
PARI
g(p, e) = if(p == 2, -3*(-2)^(e-1), if(e == 1, -p-1, e == 2, p, e > 2, 0)); a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; g(p, e));} \\ Amiram Eldar, Jan 02 2025
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA046897(n/d) * a(d).
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = -3*(-2)^(e-1), and for an odd prime p, a(p) = -(p+1), a(p^2) = p, and a(p^e) = 0 for e >= 3.
Dirichlet g.f.: 1/((1 - 1/4^(s-1)) * zeta(s-1) * zeta(s)). (End)
Comments