cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A351004 Alternately constant partitions. Number of integer partitions y of n such that y_i = y_{i+1} for all odd i.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 4, 7, 7, 10, 9, 15, 13, 21, 19, 28, 26, 40, 35, 54, 49, 72, 64, 97, 87, 128, 115, 167, 151, 220, 195, 284, 256, 366, 328, 469, 421, 598, 537, 757, 682, 959, 859, 1204, 1085, 1507, 1354, 1880, 1694, 2338, 2104, 2892, 2609, 3574, 3218, 4394
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

These are partitions of n with all even multiplicities (or run-lengths), except possibly the last.

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  2   3    4     5      6       7        8         9
     11  111  22    221    33      331      44        333
              1111  11111  222     22111    332       441
                           2211    1111111  2222      22221
                           111111           3311      33111
                                            221111    2211111
                                            11111111  111111111
		

Crossrefs

The ordered version (compositions) is A016116.
The even-length case is A035363.
A reverse version is A096441, both A349060.
The version for unequal instead of equal is A122129, even-length A351008.
The version for even instead of odd indices is A351003, even-length A351012.
The strict version is A351005, opposite A351006, even-length A035457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A069911 Expansion of Product_{i in A069909} 1/(1 - x^i).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 25, 29, 35, 41, 49, 57, 68, 78, 93, 107, 125, 144, 168, 192, 223, 255, 294, 335, 385, 437, 501, 568, 647, 732, 833, 939, 1065, 1199, 1355, 1523, 1717, 1925, 2166, 2425, 2720, 3040, 3405, 3797, 4244, 4727, 5272
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2002

Keywords

Comments

Arises from an identity of Slater's.
Number of partitions of 2*n+1 into distinct odd parts. - Vladeta Jovovic, May 08 2003
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of partitions of 2n+1 such that if k is the largest part, then k occurs an odd number of times and each integer from 1 to k-1 occurs a positive even number of times. Example: a(4)=2 because we have [3,2,2,1,1] and [1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 16 2006
Difference between number of partitions of 2n+1 with an odd number of parts and those with an even number of parts (this is a consequence of Jovovic's comment above). - George Beck, May 22 2016
Let b(k) be the convolution inverse of A035457, k=1, 2, 3, ...; then a(n) = -b(4n+3), n = 0, 1, 2, 3, ... (conjectured). - George Beck, Aug 19 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + ...
G.f. = q^23 + q^71 + q^119 + q^167 + 2*q^215 + 2*q^263 + 3*q^311 + 4*q^359 + ...
		

Crossrefs

Programs

  • Maple
    h:=product(1+x^(2*i-1),i=1..60): hser:=series(h,x=0,120): seq(coeff(hser,x^(2*n+1)),n=0..56); # Emeric Deutsch, Apr 16 2006
  • Mathematica
    H[x_] := x*QPochhammer[-1/x, x^2]/(1 + x); s = (H[Sqrt[x]] - H[-Sqrt[x]]) / (2*Sqrt[x]) + O[x]^60; CoefficientList[s, x] (* Jean-François Alcover, Nov 14 2015, after Emeric Deutsch *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n=2*n+1; A = x * O(x^n); -polcoeff( eta(x + A) / eta(x^2 + A), n))}; /* Michael Somos, Jul 18 2006 */

Formula

a(n) = A000700(2n+1) = -A081362(2n+1).
Euler transform of period 16 sequence [ 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, ...]. - Michael Somos, Apr 11 2004
G.f.: ( H(sqrt(x)) - H(-sqrt(x)) ) / (2*sqrt(x)), where H(x)=prod(i>=1, 1+x^(2*i-1) ). - Emeric Deutsch, Apr 16 2006
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(5/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 14 2015
Expansion of f(x, x^7) / f(-x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Jun 04 2016

A351008 Alternately strict partitions. Number of even-length integer partitions y of n such that y_i > y_{i+1} for all odd i.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 23, 28, 34, 41, 50, 60, 71, 85, 102, 120, 142, 168, 197, 231, 271, 316, 369, 429, 497, 577, 668, 770, 888, 1023, 1175, 1348, 1545, 1767, 2020, 2306, 2626, 2990, 3401, 3860, 4379, 4963, 5616, 6350, 7173, 8093
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

Write the series in the g.f. given below as Sum_{k >= 0} q^(1 + 3 + 5 + ... + 2*k-1 + 2*k)/Product_{i = 1..2*k} 1 - q^i. Since 1/Product_{i = 1..2*k} 1 - q^i is the g.f. for partitions with parts <= 2*k, we see that the k-th summand of the series is the g.f. for partitions with largest part 2*k in which every odd number less than 2*k appears at least once as a part. The partitions of this type are conjugate to (and hence equinumerous with) the partitions (y_1, y_2, ..., y_{2*k}) of even length 2*k having strict decrease y_i > y_(i+1) for all odd i < 2*k. - Peter Bala, Jan 02 2024

Examples

			The a(3) = 1 through a(13) = 12 partitions (A..C = 10..12):
  21   31   32   42   43   53     54     64     65     75     76
            41   51   52   62     63     73     74     84     85
                      61   71     72     82     83     93     94
                           3221   81     91     92     A2     A3
                                  4221   4321   A1     B1     B2
                                         5221   4331   4332   C1
                                                5321   5331   5332
                                                6221   5421   5431
                                                       6321   6331
                                                       7221   6421
                                                              7321
                                                              8221
a(10) = 6: the six partitions 64, 73, 82, 91, 4321 and 5221 listed above have conjugate partitions 222211, 2221111, 22111111, 211111111, 4321 and 43111, These are the partitions of 10 with largest part L even and such that every odd number less than L appears at least once as a part. - _Peter Bala_, Jan 02 2024
		

Crossrefs

The version for equal instead of unequal is A035363.
The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A122129, opposite A122135.
The odd-length version appears to be A122130.
The alternately unequal and equal version is A351007, any length A351006.

Programs

  • Maple
    series(add(q^(n*(n+2))/mul(1 - q^k, k = 1..2*n), n = 0..10), q, 141):
    seq(coeftayl(%, q = 0, n), n = 0..140); # Peter Bala, Jan 03 2025
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

Formula

Conjecture: a(n+1) = A122129(n+1) - A122130(n). - Gus Wiseman, Feb 21 2022
G.f.: Sum_{n >= 0} q^(n*(n+2))/Product_{k = 1..2*n} 1 - q^k = 1 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 4*q^8 + 5*q^9 + 6*q^10 + .... - Peter Bala, Jan 02 2024

A351012 Number of even-length integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 5, 6, 9, 10, 13, 16, 21, 24, 29, 35, 43, 50, 60, 70, 83, 97, 113, 132, 156, 178, 206, 239, 275, 316, 365, 416, 477, 545, 620, 706, 806, 912, 1034, 1173, 1326, 1496, 1691, 1902, 2141, 2410, 2704, 3034, 3406, 3808, 4261, 4765, 5317, 5932, 6617
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Examples

			The a(2) = 1 through a(8) = 9 partitions:
  (11)  (21)  (22)    (32)    (33)      (43)      (44)
              (31)    (41)    (42)      (52)      (53)
              (1111)  (2111)  (51)      (61)      (62)
                              (3111)    (2221)    (71)
                              (111111)  (4111)    (2222)
                                        (211111)  (3221)
                                                  (5111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

The ordered version (compositions) is A027383(n-2).
For odd instead of even indices we have A035363, any length A351004.
The version for unequal parts appears to be A122134, any length A122135.
This is the even-length case of A351003.
Requiring inequalities at odd positions gives A351007, any length A351006.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A122130 Expansion of f(-x^4, -x^16) / psi(-x) in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 34, 41, 50, 61, 73, 88, 106, 126, 150, 179, 211, 249, 294, 345, 404, 473, 551, 642, 747, 865, 1002, 1159, 1336, 1539, 1771, 2033, 2331, 2670, 3052, 3485, 3976, 4527, 5150, 5854, 6642, 7530, 8529, 9647, 10902
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, corrected Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of odd-length alternately strict integer partitions of n + 1, i.e., partitions y such that y_i != y_{i+1} for all odd i. For example, the a(1) = 1 through a(9) = 7 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(211) (311) (321) (322) (422) (432)
(411) (421) (431) (522)
(511) (521) (531)
(611) (621)
(711)
(32211)
The even-length version is A351008. Including even-length partitions appears to give A122129. Swapping strictly and weakly decreasing relations gives A351595. The constant instead of strict version is A351594. (End)
Wiseman's first conjecture above was proved by Connor, Proposition 2. - Peter Bala, Dec 22 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 9*x^9 + ...
G.f. = q^31 + q^71 + q^111 + 2*q^151 + 2*q^191 + 3*q^231 + 4*q^271 + 5*q^311 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(b), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.8). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(20*k-8))*(1-x^(20*k-12))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[x, x^2] QPochhammer[x^8, x^20] QPochhammer[x^12, x^20]), {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    a[ n_] := SeriesCoefficient[ Sqrt[2] x^(1/8) QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20] QPochhammer[x^20] / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}] // Simplify; (* Michael Somos, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, sqrtint(n+1), x^(k^2-1) / prod(i=1, 2*k-1, 1 - x^i, 1 + x * O(x^(n-k^2+1)))), n))};

Formula

Expansion of f(x, x^9) / f(-x^2, -x^3) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^8, -x^12)) in powers of x where f(-x) : = f(-x, -x^2) and f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, ...].
G.f.: Sum_{k>0} x^(k^2 - 1) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2k-1))).
G.f.: 1/(Product_{k>0} (1-x^(2k-1))(1-x^(20k-8))(1-x^(20k-12))).
a(n) ~ (3-sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A227344 Triangle read by rows, partitions into distinct parts by perimeter.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 0, 7, 0, 0, 0, 0, 1, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 11, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 16, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 20, 0
Offset: 1

Views

Author

Joerg Arndt, Jul 08 2013

Keywords

Comments

The perimeter of a partition is the sum of all parts p that do not have two neighbors (that is, not both p-1 and p+1 are parts).
Row sums are A000009.
Column sums are A122129 (noted by Patrick Devlin).

Examples

			Triangle starts (dots for zeros):
01: 1
02: . 1
03: . . 2
04: . . . 2
05: . . . . 3
06: . . . 1 . 3
07: . . . . . . 5
08: . . . . . . . 6
09: . . . . . 1 . . 7
10: . . . . 1 . . . . 9
11: . . . . . . . . 1 . 11
12: . . . . . . . 1 . 1 . 13
13: . . . . . . . . 1 . 1 . 16
14: . . . . . . 1 . . . . 1 . 20
15: . . . . . 1 . . . 1 . 1 1 . 23
16: . . . . . . . . . . 2 . 1 1 . 28
17: . . . . . . . . . . . 2 . 1 2 . 33
18: . . . . . . . . 1 . . 1 2 . 1 2 . 39
19: . . . . . . . . . 1 . . 1 1 1 1 3 . 46
20: . . . . . . . 1 . . . . . 1 1 2 1 3 . 55
21: . . . . . . 1 . . . . . . 2 2 1 2 1 4 . 63
22: . . . . . . . . . . 1 . 1 . 2 1 1 2 2 4 . 75
23: . . . . . . . . . . . 1 . 1 . 2 1 3 2 2 5 . 87
24: . . . . . . . . . . . . 1 . 1 2 3 . 4 2 3 5 . 101
25: . . . . . . . . . 1 . . . 1 . 1 1 3 . 6 2 3 7 . 117
26: . . . . . . . . . . 1 . 1 . . . 2 1 3 . 7 2 4 8 . 136
27: . . . . . . . . 1 . . . . 1 . . . 5 2 2 1 8 3 4 9 . 156
28: . . . . . . . 1 . . . . . . 1 1 . . 4 2 3 2 8 4 5 11 . 180
29: . . . . . . . . . . . . . . 1 2 1 . . 4 3 3 3 9 5 5 13 . 207
30: . . . . . . . . . . . 1 . . 1 1 1 1 . 3 6 2 2 5 9 6 6 14 . 238
		

Crossrefs

Cf. A227345 (partitions by boundary size).
Cf. A227426 (diagonal: number of partitions with maximal perimeter).
Cf. A227538 (smallest k with positive T(n,k)), A227614 (second lower diagonal). - Alois P. Heinz, Jul 17 2013

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x^(i+1), 1),
          expand(`if`(i<1, 0, `if`(t>1, x^(i+1), 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x^(i+1), 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Jul 16 2013
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t>1, x^(i+1), 1], Expand[If[i<1, 0, If[t>1, x^(i+1), 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t == 2, x^(i+1), 1]*b[n-i, i-1, Quotient[t, 2]+2]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n, 0]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

A239327 Number of palindromic Carlitz compositions of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 5, 5, 7, 10, 14, 14, 25, 26, 42, 48, 75, 79, 132, 142, 226, 252, 399, 432, 704, 760, 1223, 1336, 2143, 2328, 3759, 4079, 6564, 7150, 11495, 12496, 20135, 21874, 35215, 38310, 61639, 67018, 107912, 117298, 188839, 205346, 330515, 359350, 578525, 628951
Offset: 0

Views

Author

Geoffrey Critzer, Mar 16 2014

Keywords

Comments

A palindromic composition is a composition that is identical to its own reverse. There are 2^floor(n/2) palindromic compositions. A Carlitz composition has no two consecutive equal parts (A003242). This sequence enumerates compositions that are both palindromic and Carlitz.
Also the number of odd-length integer compositions of n into parts that are alternately unequal and equal (n > 0). The unordered version (partitions) is A053251. - Gus Wiseman, Feb 26 2022

Examples

			a(9) = 7 because we have: 9, 1+7+1, 2+5+2, 4+1+4, 1+3+1+3+1, 2+1+3+1+2, 1+2+3+2+1. 2+3+4 is not counted because it is not palindromic. 3+3+3 is not counted because it has consecutive equal parts.
		

References

  • S. Heubach and T. Mansour, Compositions of n with parts in a set, Congr. Numer. 168 (2004), 127-143.
  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2010, page 67.

Crossrefs

Carlitz compositions are counted by A003242.
Palindromic compositions are counted by A016116.
The unimodal case is A096441.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i=0, 0, `if`(n=0, 1,
          add(`if`(i=j, 0, b(n-j, j)), j=1..n)))
        end:
    a:= n-> `if`(n=0, 1, add(b(i, n-2*i), i=0..n/2)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 16 2014
  • Mathematica
    nn=50;CoefficientList[Series[(1+Sum[x^j(1-x^j)/(1+x^(2j)),{j,1,nn}])/(1-Sum[x^(2j)/(1+x^(2j)),{j,1,nn}]),{x,0,nn}],x]
    (* or *)
    Table[Length[Select[Level[Map[Permutations,Partitions[n]],{2}],Apply[And,Table[#[[i]]==#[[Length[#]-i+1]],{i,1,Floor[Length[#]/2]}]]&&Apply[And,Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1}]]&]],{n,0,20}]
  • PARI
    a(n) = polcoeff((1 + sum(j=1, n, x^j*(1-x^j)/(1+x^(2*j)) + O(x*x^n))) / (1 - sum(j=1, n, x^(2*j)/(1+x^(2*j)) + O(x*x^n))), n); \\ Andrew Howroyd, Oct 12 2017

Formula

G.f.: (1 + Sum_{j>=1} x^j*(1-x^j)/(1+x^(2*j))) / (1 - Sum_{j>=1} x^(2*j)/(1+x^(2*j))).
a(n) ~ c / r^n, where r = 0.7558768372943356987836792261127971643747976345582722756032673... is the root of the equation sum_{j>=1} x^(2*j)/(1+x^(2*j)) = 1, c = 0.5262391407444644722747255167331403939384758635340487280277... if n is even and c = 0.64032989654153238794063877354074732669441634551692765196197... if n is odd. - Vaclav Kotesovec, Aug 22 2014

A351011 Numbers k such that the k-th composition in standard order has even length and alternately equal and unequal parts, i.e., all run-lengths equal to 2.

Original entry on oeis.org

0, 3, 10, 36, 43, 58, 136, 147, 228, 235, 528, 547, 586, 676, 698, 904, 915, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 2795, 3600, 3619, 3658, 3748, 3770, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 9444, 9451, 10768, 10787, 10826, 11144, 11155, 14368
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and standard compositions begin:
    0:           0  ()
    3:          11  (1,1)
   10:        1010  (2,2)
   36:      100100  (3,3)
   43:      101011  (2,2,1,1)
   58:      111010  (1,1,2,2)
  136:    10001000  (4,4)
  147:    10010011  (3,3,1,1)
  228:    11100100  (1,1,3,3)
  235:    11101011  (1,1,2,2,1,1)
  528:  1000010000  (5,5)
  547:  1000100011  (4,4,1,1)
  586:  1001001010  (3,3,2,2)
  676:  1010100100  (2,2,3,3)
  698:  1010111010  (2,2,1,1,2,2)
  904:  1110001000  (1,1,4,4)
  915:  1110010011  (1,1,3,3,1,1)
		

Crossrefs

The case of twins (binary weight 2) is A000120.
All terms are evil numbers A001969.
These compositions are counted by A003242 interspersed with 0's.
Partitions of this type are counted by A035457, any length A351005.
The Heinz numbers of these compositions are A062503.
Taking singles instead of twins gives A333489, complement A348612.
This is the anti-run case of A351010.
The strict case (distinct twins) is A351009, counted by A077957(n-2).
A011782 counts compositions.
A085207/A085208 represent concatenation of standard compositions.
A345167 ranks alternating compositions, counted by A025047.
A350355 ranks up/down compositions, counted by A025048.
A350356 ranks down/up compositions, counted by A025049.
A351014 counts distinct runs in standard compositions.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],And@@(#==2&)/@Length/@Split[stc[#]]&]

A351595 Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 30, 35, 44, 52, 63, 74, 90, 105, 126, 148, 175, 204, 242, 280, 330, 382, 446, 515, 600, 690, 800, 919, 1060, 1214, 1398, 1595, 1830, 2086, 2384, 2711, 3092, 3506, 3988, 4516, 5122, 5788, 6552, 7388, 8345
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12):
  1   2   3   4   5     6     7     8     9     A     B       C
                  221   321   331   332   432   442   443     543
                              421   431   441   532   542     552
                                    521   531   541   551     642
                                          621   631   632     651
                                                721   641     732
                                                      731     741
                                                      821     831
                                                      33221   921
                                                              43221
		

Crossrefs

The ordered version (compositions) is A000213 shifted right once.
All odd-length partitions are counted by A027193.
The opposite appears to be A122130, even-length A351008, any length A122129.
This appears to be the odd-length case of A122135, even-length A122134.
The case that is constant at odd indices:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
For equality instead of inequality:
- any length: A351003
- odd-length: A000009 (except at 0)
- even-length: A351012
- opposite any length: A351004
- opposite odd-length: A351594
- opposite even-length: A035363

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A237983 Triangular array read by rows: row n gives the SE partitions of n; see Comments.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

See Comments at A237981 for definitions of the directional partitions, NW, NE, SW, SE. The number of SE partitions of n is A122129(n) for n >=1.

Examples

			The first 4 rows of the array of SE partitions:
1
1 .. 1
2 .. 1 .. 1 .. 1 .. 1
3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows:  [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
		

Crossrefs

Programs

  • Mathematica
    z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]};    Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &,    Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
    Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
    Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
    Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
    Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
    (* Peter J. C. Moses, Feb 25 2014 *)
Previous Showing 11-20 of 25 results. Next