cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A358714 a(n) = phi(n)^3.

Original entry on oeis.org

1, 1, 8, 8, 64, 8, 216, 64, 216, 64, 1000, 64, 1728, 216, 512, 512, 4096, 216, 5832, 512, 1728, 1000, 10648, 512, 8000, 1728, 5832, 1728, 21952, 512, 27000, 4096, 8000, 4096, 13824, 1728, 46656, 5832, 13824, 4096, 64000, 1728, 74088, 8000, 13824, 10648, 97336, 4096, 74088
Offset: 1

Views

Author

Keywords

Comments

Number of solutions to gcd(x*y*z, n) = 1 such that 0 <= x,y,z <= n-1.
x*y*z == t (mod n) where t is a unit (invertible element) in Z_n. Since t is a unit, all x,y,z must be units. Here there are A000010(n) possibilities for each x,y,z so there are a total of A000010(n)^3 ways to get t as a unit.

Examples

			a(9) = A000010(9)^3 = 216.
		

Crossrefs

Programs

  • Magma
    [(EulerPhi(n))^3: n in [1..180]];
    
  • Mathematica
    a[n_] := EulerPhi[n]^3; Array[a, 100] (* Amiram Eldar, Jan 06 2023 *)
  • PARI
    a(n) = eulerphi(n)^3;

Formula

a(n) = A000010(n)^3.
From Amiram Eldar, Jan 06 2023: (Start)
Multiplicative with a(p^e) = (p-1)^3*p^(3*e-3).
Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime}(1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.08429696844... .
Sum_{k>=1} 1/a(k) = Product_{p prime} (1 + p^3/((p-1)^3*(p^3-1))) = 2.47619474816... (A335818). (End)

A377507 Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^2 * x^k/k), where phi is the Euler totient function A000010.

Original entry on oeis.org

1, 1, 2, 12, 66, 690, 4860, 63000, 711900, 8876700, 131405400, 2160219600, 37553808600, 686750664600, 13805424032400, 278759396916000, 6445702905642000, 150985820419434000, 3825993309462324000, 99427990563910008000, 2724045313186016820000, 78032929885709378580000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; $RecursionLimit->Infinity; a[n_]:=a[n]=If[n==0, 1, Sum[EulerPhi[k]^2*a[n-k], {k, 1, n}]/n];Table[a[n]*n!, {n, 0, nmax}]
    nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]^2 * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

log(a(n)/n!) ~ 3 * c^(1/3) * n^(2/3) / 2^(2/3), where c = Product_{p primes} (1 - 2/p^2 + 1/p^3) = A065464 = 0.428249505677094440218765707581823546121298...

A126775 a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).

Original entry on oeis.org

1, 2, 8, 12, 32, 16, 72, 64, 108, 64, 200, 96, 288, 144, 256, 320, 512, 216, 648, 384, 576, 400, 968, 512, 1200, 576, 1296, 864, 1568, 512, 1800, 1536, 1600, 1024, 2304, 1296, 2592, 1296, 2304, 2048, 3200, 1152, 3528, 2400, 3456, 1936, 4232, 2560, 5292, 2400
Offset: 1

Views

Author

Jonathan Vos Post, May 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [ EulerPhi(n)*EulerPhi(n)*NumberOfDivisors(n) : n in [1..100] ];
  • Mathematica
    Table[EulerPhi[n]^2 DivisorSigma[0,n],{n,50}] (* Harvey P. Dale, Dec 05 2012 *)

Formula

Multiplicative with a(p^e) = (e+1)*(p-1)^2*p^(2*e-2). - Amiram Eldar, Dec 29 2022
From Vaclav Kotesovec, May 31 2024: (Start)
Dirichlet g.f.: zeta(s-2)^2 * Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).
Sum_{k=1..n} a(k) ~ f(3) * n^3 * (log(n) + 2*gamma - 1/3 + f'(3)/f(3)) / 3, where
f(3) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264...,
f'(3) = f(3) * Sum_{p prime} 2*(2*p - 1) * log(p) / (p^3 + p^2 - 3*p + 1) = f(3) * 1.6860441157206199528397247528679297282000614932962665074593283751342385...
and gamma is the Euler-Mascheroni constant A001620. (End)

A160620 a(n) = Sum_{d|n} phi(n/d)^2*2^d.

Original entry on oeis.org

0, 2, 6, 16, 28, 64, 96, 200, 320, 616, 1152, 2248, 4304, 8480, 16728, 33152, 66048, 131584, 263160, 524936, 1050176, 2098240, 4196952, 8389576, 16782976, 33555744, 67117920, 134220712, 268453360, 536872480, 1073780352, 2147485448, 4295034880, 8589944384
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2009

Keywords

Crossrefs

Programs

  • Maple
    A160620 := proc(n)
        if n =0 then
            0;
        else
            add((numtheory[phi](n/d))^2*2^d,d=numtheory[divisors](n)) ;
        end if ;
    end proc: # R. J. Mathar, Jun 24 2021
  • Mathematica
    a[n_]:= If[n<1, 0, Sum[EulerPhi[n/d]^2 * 2^d, {d, Divisors[n]}]]; Table[a[n], {n,0,50}] (* G. C. Greubel, May 06 2018 *)
  • PARI
    a(n) = if (n, sumdiv(n, d, eulerphi(n/d)^2*2^d), 0); \\ Michel Marcus, May 07 2018, Jun 22 2021

Formula

Dirichlet (convolution) product of A127473 and A000079. - R. J. Mathar, Jun 24 2021

A245497 a(n) = phi(n)^2/2, where phi(n) = A000010(n), the Euler totient function.

Original entry on oeis.org

2, 2, 8, 2, 18, 8, 18, 8, 50, 8, 72, 18, 32, 32, 128, 18, 162, 32, 72, 50, 242, 32, 200, 72, 162, 72, 392, 32, 450, 128, 200, 128, 288, 72, 648, 162, 288, 128, 800, 72, 882, 200, 288, 242, 1058, 128, 882, 200, 512, 288, 1352, 162, 800, 288, 648, 392, 1682
Offset: 3

Views

Author

Wesley Ivan Hurt, Jul 24 2014

Keywords

Comments

Values of a(n) < 3 are non-integers since phi(1) = phi(2) = 1 (odd). Since phi(n) is even for all n > 2, a(n) is a positive integer.
a(n) gives the sum of all the parts in the partitions of phi(n) with exactly two parts (see example).
a(n) is also the area of a square with diagonal phi(n).

Examples

			a(5) = 8; since phi(5)^2/2 = 4^2/2 = 8. The partitions of phi(5) = 4 into exactly two parts are: (3,1) and (2,2). The sum of all the parts in these partitions gives: 3+1+2+2 = 8.
a(7) = 18; since phi(7)^2/2 = 6^2/2 = 18. The partitions of phi(7) = 6 into exactly two parts are: (5,1), (4,2) and (3,3). The sum of all the parts in these partitions gives: 5+1+4+2+3+3 = 18.
		

Crossrefs

Programs

  • Maple
    with(numtheory): 245497:=n->phi(n)^2/2: seq(245497(n), n=3..50);
  • Mathematica
    Table[EulerPhi[n]^2/2, {n, 3, 50}]
  • PARI
    vector(100, n, eulerphi(n+2)^2/2) \\ Derek Orr, Aug 04 2014

Formula

a(n) = phi(n)^2/2 = A000010(n)^2/2 = A127473(n)/2, n > 2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/6) * Product_{p prime} (1 - (2*p-1)/p^3) = A065464 / 6 = 0.0713749... . - Amiram Eldar, Nov 14 2024

A279912 a(n) = Sum_{i=1..n} denominator(i^n/n).

Original entry on oeis.org

0, 1, 3, 7, 10, 21, 21, 43, 36, 57, 63, 111, 70, 157, 129, 147, 136, 273, 171, 343, 210, 301, 333, 507, 252, 505, 471, 495, 430, 813, 441, 931, 528, 777, 819, 903, 570, 1333, 1029, 1099, 756, 1641, 903, 1807, 1110, 1197, 1521, 2163, 952, 2065, 1515, 1911, 1570, 2757
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 22 2016

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000027 and A127473 which are both multiplicative. - Andrew Howroyd, Aug 05 2018

Crossrefs

Programs

  • GAP
    List([0..10],n->Sum([1..n],k->DenominatorRat(k^n/n))); # Muniru A Asiru, Oct 24 2018
  • Maple
    A279912:=n->add(denom(i^n/n), i=1..n): seq(A279912(n), n=0..100);
  • Mathematica
    Table[DivisorSum[n, # EulerPhi[n/#]^2 &], {n, 53}] (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    a(n) = sum(i=1, n, denominator(i^n/n)); \\ Michel Marcus, Jun 18 2018
    
  • PARI
    a(n) = sumdiv(n, d, d*eulerphi(n/d)^2); \\ Michel Marcus, Jun 18 2018
    
  • PARI
    a(n) = my(f=factor(n)); if(n==0, 0, prod(k=1, #f~, f[k,1]^(f[k,2]-1)  * ((f[k,1]-1) * f[k,1]^f[k,2] + 1))); \\ Daniel Suteu, Oct 24 2018
    

Formula

G.f.: Sum_{k>=1} phi(k)^2*x^k/(1 - x^k)^2, where phi(k) is the Euler totient function. - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..n} gcd(n, k) * phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 15 2018
a(n) = Sum_{d|n} d * phi(n/d)^2, where phi(k) is the Euler totient function. - Daniel Suteu, Jun 17 2018
Multiplicative with a(p^k) = p^(k-1) * ((p-1) * p^k + 1). - Daniel Suteu, Oct 24 2018
a(n) = Sum_{k=1..n} n/gcd(n,k)*phi(gcd(n,k))^2/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/(p*(p+1))) = A065463 / 3 = 0.234814... . - Amiram Eldar, Oct 23 2022

A353435 Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 0, 1, 1, 4, 4, 4, 0, 1, 1, 2, 16, 0, 4, 0, 1, 1, 6, 4, 48, 0, 0, 0, 1, 1, 4, 36, 0, 144, 0, 0, 0, 1, 1, 6, 16, 180, 0, 320, 0, 0, 0, 1, 1, 4, 36, 0, 900, 0, 720, 0, 0, 0, 1, 1, 10, 16, 108, 0, 3744, 0, 1312, 0, 0, 0, 1
Offset: 0

Views

Author

Pontus von Brömssen, Apr 21 2022

Keywords

Comments

T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does.

Examples

			Array begins:
  n\m| 1  2  3  4    5  6        7  8   9 10
  ---+--------------------------------------
   0 | 1  1  1  1    1  1        1  1   1  1
   1 | 1  1  2  2    4  2        6  4   6  4
   2 | 1  1  4  4   16  4       36 16  36 16
   3 | 1  0  4  0   48  0      180  0 108  0
   4 | 1  0  4  0  144  0      900  0 324  0
   5 | 1  0  0  0  320  0     3744  0   0  0
   6 | 1  0  0  0  720  0    15552  0   0  0
   7 | 1  0  0  0 1312  0    54216  0   0  0
   8 | 1  0  0  0 2400  0   189468  0   0  0
   9 | 1  0  0  0 3232  0   550728  0   0  0
  10 | 1  0  0  0 4560  0  1604088  0   0  0
  11 | 1  0  0  0 4656  0  3895560  0   0  0
  12 | 1  0  0  0 4928  0  9467856  0   0  0
  13 | 1  0  0  0 4368  0 19185516  0   0  0
		

Crossrefs

Rows: A000012 (n=0), A000010 (n=1), A127473 (n=2).
Columns: A000012 (m=1), A130716 (m=2), A166926 (m=4 and m=6).

Formula

For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)).
T(n,m) = A353436(n,m) if m is prime.
T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime.
T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime.
Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime.
T(n,2) = 0 for n >= 3.
T(n,3) = 0 for n >= 5.
T(n,5) = 0 for n >= 23.

A049454 a(n) = 1 + Sum_{i=1..n} phi(i)^2.

Original entry on oeis.org

1, 2, 3, 7, 11, 27, 31, 67, 83, 119, 135, 235, 251, 395, 431, 495, 559, 815, 851, 1175, 1239, 1383, 1483, 1967, 2031, 2431, 2575, 2899, 3043, 3827, 3891, 4791, 5047, 5447, 5703, 6279, 6423, 7719, 8043, 8619, 8875, 10475, 10619, 12383
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1+Sum[EulerPhi[i]^2,{i,n}],{n,0,50}] (* Harvey P. Dale, Mar 21 2020 *)
    Join[{1}, 1 + Accumulate[EulerPhi[Range[45]]^2]] (* Amiram Eldar, Dec 01 2024 *)
  • PARI
    a(n) = 1 + sum(i=1, n, eulerphi(i)^2); \\ Michel Marcus, Mar 07 2020

Formula

a(n) = A057434(n) + 1 for n >= 1. - Amiram Eldar, Dec 01 2024

A068484 Numbers k that divide phi(k)^2 + sigma(k)^2.

Original entry on oeis.org

1, 2, 10, 45, 65, 180, 212, 222, 369, 588, 810, 864, 1274, 1521, 1836, 2548, 2940, 3114, 3552, 4770, 5496, 5684, 6027, 6642, 8820, 9140, 10464, 10614, 13311, 14688, 15210, 20737, 21600, 22776, 26900, 27000, 27270, 28476, 28518, 42212, 42336
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Comments

a(275) > 7*10^7. - G. C. Greubel, Oct 15 2018

Crossrefs

Cf. A072861 (sigma(n)^2), A127473 (phi(n)^2).

Programs

  • GAP
    Filtered([1..42500],n->(Phi(n)^2+Sigma(n)^2) mod n=0); # Muniru A Asiru, Oct 16 2018
  • Maple
    with(numtheory): select(n->modp(phi(n)^2+sigma(n)^2,n)=0,[$1..42500]); # Muniru A Asiru, Oct 16 2018
  • Mathematica
    Select[Range[7000], IntegerQ[(EulerPhi[#]^2 + DivisorSigma[1, #]^2)/#] &] (* G. C. Greubel, Oct 15 2018 *)

A082954 Numbers k such that phi(k*sigma(k)) = phi(k)^2.

Original entry on oeis.org

1, 3, 39, 111, 175, 183, 219, 333, 459, 471, 549, 579, 657, 831, 939, 969, 1191, 1263, 1371, 1413, 1443, 1623, 1737, 1839, 1983, 2019, 2199, 2271, 2379, 2493, 2631, 2817, 2847, 2907, 2991, 3279, 3459, 3573, 3603, 3639, 3711, 3789, 3963, 4113, 4131, 4143
Offset: 1

Views

Author

Benoit Cloitre, May 26 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],EulerPhi[#*DivisorSigma[1,#]]==EulerPhi[#]^2&] (* Harvey P. Dale, Jan 25 2013 *)
Previous Showing 11-20 of 26 results. Next