A157636
Triangle read by rows: T(n, k) = 1 if k=0 or k=n, otherwise = n*k*(n-k)/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 8, 6, 1, 1, 10, 15, 15, 10, 1, 1, 15, 24, 27, 24, 15, 1, 1, 21, 35, 42, 42, 35, 21, 1, 1, 28, 48, 60, 64, 60, 48, 28, 1, 1, 36, 63, 81, 90, 90, 81, 63, 36, 1, 1, 45, 80, 105, 120, 125, 120, 105, 80, 45, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 6, 8, 6, 1;
1, 10, 15, 15, 10, 1;
1, 15, 24, 27, 24, 15, 1;
1, 21, 35, 42, 42, 35, 21, 1;
1, 28, 48, 60, 64, 60, 48, 28, 1;
1, 36, 63, 81, 90, 90, 81, 63, 36, 1;
1, 45, 80, 105, 120, 125, 120, 105, 80, 45, 1;
-
A157636:= func< n,k | k eq 0 or k eq n select 1 else n*k*(n-k)/2 >;
[A157636(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 13 2021
-
T[n_, k_] = If[n*k*(n-k)==0, 1, n*k*(n-k)/2];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten
-
def A157636(n,k): return 1 if (k==0 or k==n) else n*k*(n-k)/2
flatten([[A157636(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Dec 13 2021
A180357
a(n) = n^7 + 7*n.
Original entry on oeis.org
0, 8, 142, 2208, 16412, 78160, 279978, 823592, 2097208, 4783032, 10000070, 19487248, 35831892, 62748608, 105413602, 170859480, 268435568, 410338792, 612220158, 893871872, 1280000140, 1801088688, 2494358042
Offset: 0
First term corrected and additional terms from
Harvey P. Dale, Sep 10 2010
A265611
a(n) = a(n-1) + floor((n-1)/2) - (-1)^n + 2 for n>=2, a(0)=1, a(1)=3.
Original entry on oeis.org
1, 3, 4, 8, 10, 15, 18, 24, 28, 35, 40, 48, 54, 63, 70, 80, 88, 99, 108, 120, 130, 143, 154, 168, 180, 195, 208, 224, 238, 255, 270, 288, 304, 323, 340, 360, 378, 399, 418, 440, 460, 483, 504, 528, 550, 575, 598, 624, 648, 675, 700, 728, 754, 783, 810, 840
Offset: 0
Cf.
A055998, after 3: a(n+1) + a(n) for n>0.
Cf.
A063929: a(2*n+1) gives the second column of the triangle; for n>0, a(2*n) gives the third column.
-
[1] cat [(2*n*(n+6)-5*(-1)^n+5)/8: n in [1..60]]; // Bruno Berselli, Dec 18 2015
-
A265611 := proc(n) iquo(n+1,2); %*(%+irem(n+1,2)+2)+0^n end:
seq(A265611(n), n=0..55);
-
Join[{1}, Table[(2 n (n + 6) - 5 (-1)^n + 5)/8, {n, 1, 60}]] (* Bruno Berselli, Dec 18 2015 *)
-
Vec((x^4-2*x^3+2*x^2-x-1)/(x^4-2*x^3+2*x-1) + O(x^1000)) \\ Altug Alkan, Dec 18 2015
-
# The initial values x, y = 0, 1 give the quarter-squares A002620.
def A265611():
x, y = 1, 2
while True:
yield x
x, y = x + y, x//y + 1
a = A265611(); print([next(a) for i in range(60)])
Original entry on oeis.org
0, 9, 272, 6585, 65568, 390665, 1679664, 5764857, 16777280, 43046793, 100000080, 214358969, 429981792, 815730825, 1475789168, 2562890745, 4294967424, 6975757577, 11019960720, 16983563193, 25600000160, 37822859529, 54875873712
Offset: 0
-
Table[n^8+8n,{n,0,30}] (* or *) LinearRecurrence[ {9,-36,84,-126,126,-84,36,-9,1},{0,9,272,6585,65568,390665,1679664,5764857,16777280},30] (* Harvey P. Dale, Jan 03 2012 *)
A356879
Numbers k such that the sum k^x + k^y can be a square with {x, y} >= 0.
Original entry on oeis.org
0, 2, 3, 8, 15, 18, 24, 32, 35, 48, 50, 63, 72, 80, 98, 99, 120, 128, 143, 162, 168, 195, 200, 224, 242, 255, 288, 323, 338, 360, 392, 399, 440, 450, 483, 512, 528, 575, 578, 624, 648, 675, 722, 728, 783, 800, 840, 882, 899, 960, 968, 1023, 1058, 1088, 1152, 1155, 1224
Offset: 0
Squares that can be produced with k = 8: 8^0 + 8^1 = 9; 8^1 + 8^1 = 16; 8^2 + 8^3 = 576; 8^3 + 8^3 = 1024; 8^4 + 8^5 = 36864; 8^5 + 8^5 = 65536; 8^6 + 8^7 = 2359296, ....
-
Select[Range[0, 1225], IntegerQ[Sqrt[# + 1]] || IntegerQ[Sqrt[#/2]] &] (* Amiram Eldar, Sep 18 2022 *)
-
from gmpy2 import is_square
print([n for n in range(0,1225) if is_square(n+1) or (n % 2 == 0 and is_square(n//2))])
A133475
Integers n such that n^3 + n^2 - 9*n + 16 is a square.
Original entry on oeis.org
-4, -3, -1, 0, 1, 3, 5, 11, 15, 28, 47, 55, 81, 549, 1799, 8361
Offset: 1
0^3 + (-5)^2 + (-9) = 4^2, 1^3 + (-4)^2 + (-8) = 3^2, 3^3 + (-2)^2 + (-6) = 5^2
-
P := PolynomialRing(Integers()); {x: x in Sort([ p[1] : p in IntegralPoints(EllipticCurve(n^3 + n^2 - 9*n + 16)) ])};
-
ok[x_] := Reduce[{y^2 == x^3 + x^2 - 9*x + 16, y >= 0}, y, Integers] =!= False; Select[Table[x, {x, -4, 10000}], ok ] (* Jean-François Alcover, Sep 07 2011 *)
-
is(n)=issquare(n^3+n^2-9*n+16) \\ Charles R Greathouse IV, Sep 06 2016
-
EllipticCurve([0,1,0,-9,16]).integral_points()
Original entry on oeis.org
0, 10, 530, 19710, 262180, 1953170, 10077750, 40353670, 134217800, 387420570, 1000000090, 2357947790, 5159780460, 10604499490, 20661046910, 38443359510, 68719476880, 118587876650, 198359290530, 322687697950, 512000000180
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
A343009
a(n) = (n^(2n)-1)/(n^2-1) for n > 1, a(1) = 1.
Original entry on oeis.org
1, 5, 91, 4369, 406901, 62193781, 14129647351, 4467856773185, 1876182941212489, 1010101010101010101, 678356244890331342611, 555922008415320588345745, 546031727340884622966664381, 633213824057681722185793753109, 856031514432518244055765015738351
Offset: 1
a(10) = (10^20-1)/99 = 1010101010101010101.
Comments