Original entry on oeis.org
1, 1, 2, 3, 10, 8, 9, 42, 64, 32, 27, 162, 360, 352, 128, 81, 594, 1728, 2496, 1792, 512, 243, 2106, 7560, 14400, 15360, 8704, 2048, 729, 7290, 31104, 73440, 103680, 87552, 40960, 8192, 2187, 24786, 122472, 344736, 604800, 677376, 473088, 188416, 32768
Offset: 0
First six rows:
1;
1, 2;
3, 10, 8;
9, 42, 64, 32;
27, 162, 360, 352, 128;
81, 594, 1728, 2496, 1792, 512;
-
function T(n, k) // T = A193729
if k lt 0 or k gt n then return 0;
elif n lt 2 then return k+1;
else return 3*T(n-1, k) + 4*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 28 2023
-
(* First program *)
z = 8; a = 1; b = 2; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193728 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193729 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1,k] + 4*T[n -1, k-1]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 28 2023 *)
-
def T(n, k): # T = A193729
if (k<0 or k>n): return 0
elif (n<2): return k+1
else: return 3*T(n-1, k) + 4*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 28 2023
A193730
Triangular array: the fusion of polynomial sequences P and Q given by p(n,x) = (2x+1)^n and q(n,x) = (2x+1)^n.
Original entry on oeis.org
1, 2, 1, 4, 8, 3, 8, 28, 30, 9, 16, 80, 144, 108, 27, 32, 208, 528, 648, 378, 81, 64, 512, 1680, 2880, 2700, 1296, 243, 128, 1216, 4896, 10800, 14040, 10692, 4374, 729, 256, 2816, 13440, 36288, 60480, 63504, 40824, 14580, 2187, 512, 6400, 35328, 112896, 229824, 308448, 272160, 151632, 48114, 6561
Offset: 0
First six rows:
1;
2, 1;
4, 8, 3;
8, 28, 30, 9;
16, 80, 144, 108, 27;
32, 208, 528, 648, 378, 81;
-
function T(n, k) // T = A193730
if k lt 0 or k gt n then return 0;
elif n lt 2 then return n-k+1;
else return 2*T(n-1, k) + 3*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
-
(* First program *)
z = 8; a = 2; b = 1; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193731 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 2*T[n-1, k] + 3*T[n-1, k-1]]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
-
def T(n, k): # T = A193730
if (k<0 or k>n): return 0
elif (n<2): return n-k+1
else: return 2*T(n-1, k) + 3*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
Offset: 0
First six rows:
1;
1, 2;
3, 8, 4;
9, 30, 28, 8;
27, 108, 144, 80, 16;
81, 378, 648, 528, 208, 32;
-
function T(n, k) // T = A193731
if k lt 0 or k gt n then return 0;
elif n lt 2 then return k+1;
else return 3*T(n-1, k) + 2*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
-
(* First program *)
z = 8; a = 2; b = 1; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193731 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
-
def T(n, k): # T = A193731
if (k<0 or k>n): return 0
elif (n<2): return k+1
else: return 3*T(n-1, k) + 2*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
Original entry on oeis.org
1, 2, 1, 8, 6, 1, 32, 32, 10, 1, 128, 160, 72, 14, 1, 512, 768, 448, 128, 18, 1, 2048, 3584, 2560, 960, 200, 22, 1, 8192, 16384, 13824, 6400, 1760, 288, 26, 1, 32768, 73728, 71680, 39424, 13440, 2912, 392, 30, 1, 131072, 327680, 360448, 229376, 93184, 25088, 4480, 512, 34, 1
Offset: 0
First six rows:
1;
2, 1;
8, 6, 1;
32, 32, 10, 1;
128, 160, 72, 14, 1;
512, 768, 448, 128, 18, 1;
-
function T(n, k) // T = A193735
if k lt 0 or k gt n then return 0;
elif n lt 2 then return n-k+1;
else return 4*T(n-1, k) + T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2023
-
(* First program *)
z = 8; a = 2; b = 1; c = 1; d = 2;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193734 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193735 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, n-k+1, 4*T[n-1, k] + T[n -1, k-1]]];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 19 2023 *)
-
def T(n, k): # T = A193735
if (k<0 or k>n): return 0
elif (n<2): return n-k+1
else: return 4*T(n-1, k) + T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 19 2023
A358904
Number of finite sets of compositions with all equal sums and total sum n.
Original entry on oeis.org
1, 1, 2, 4, 9, 16, 38, 64, 156, 260, 632, 1024, 2601, 4096, 10208, 16944, 40966, 65536, 168672, 262144, 656980, 1090240, 2620928, 4194304, 10862100, 16781584, 41940992, 69872384, 168403448, 268435456, 693528552, 1073741824, 2695006177, 4473400320, 10737385472
Offset: 0
The a(1) = 1 through a(4) = 9 sets:
{(1)} {(2)} {(3)} {(4)}
{(11)} {(12)} {(13)}
{(21)} {(22)}
{(111)} {(31)}
{(112)}
{(121)}
{(211)}
{(1111)}
{(2),(11)}
The case of sets of partitions is
A359041.
A001970 counts multisets of partitions.
-
Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}]
-
a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ Michel Marcus, Dec 14 2022
A383140
Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 6, 1, 0, -6, 20, 12, 1, 0, -30, 10, 80, 20, 1, 0, 42, -320, 270, 220, 30, 1, 0, 882, -1386, -770, 1470, 490, 42, 1, 0, 954, 7308, -15064, 2800, 5180, 952, 56, 1, 0, -39870, 101826, -39340, -61992, 29820, 14364, 1680, 72, 1, 0, -203958, -40680, 841770, -666820, -86940, 139440, 34020, 2760, 90, 1
Offset: 0
f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k).
f_0(m) = 1.
f_1(m) = m.
f_2(m) = 2*m + m^2.
f_3(m) = 2*m + 6*m^2 + m^3.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 6, 1;
0, -6, 20, 12, 1;
0, -30, 10, 80, 20, 1;
0, 42, -320, 270, 220, 30, 1;
...
-
T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1));
-
def a_row(n):
s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n))
return expand(s).list()
for n in (0..10): print(a_row(n))
A183190
Triangle T(n,k), read by rows, given by (1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 2, 1, 0, 4, 4, 1, 0, 8, 12, 6, 1, 0, 16, 32, 24, 8, 1, 0, 32, 80, 80, 40, 10, 1, 0, 64, 192, 240, 160, 60, 12, 1, 0, 128, 448, 672, 560, 280, 84, 14, 1, 0, 256, 1024, 1792, 1792, 1120, 448, 112, 16, 1, 0, 512, 2304, 4608, 5376, 4032, 2016, 672, 144, 18, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
2, 1, 0;
4, 4, 1, 0;
8, 12, 6, 1, 0;
16, 32, 24, 8, 1, 0;
32, 80, 80, 40, 10, 1, 0;
...
-
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n<2, 1-k, 2*T(n-1, k) +T(n-1, k-1)))
end:
seq(seq(T(n,k), k=0..n), n=0..12); # Alois P. Heinz, Nov 08 2019
-
T[n_, k_] /; 0 <= k <= n := T[n, k] = 2 T[n-1, k] + T[n-1, k-1];
T[0, 0] = T[1, 0] = 1; T[1, 1] = 0; T[, ] = 0;
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 08 2019 *)
A185081
Triangle T(n,k), read by rows, given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 4, 3, 0, 3, 9, 10, 5, 0, 5, 18, 28, 22, 8, 0, 8, 35, 68, 74, 45, 13, 0, 13, 66, 154, 210, 177, 88, 21, 0, 21, 122, 331, 541, 574, 397, 167, 34, 0, 34, 222, 686, 1302, 1656, 1446, 850, 310, 55
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 2, 4, 3;
0, 3, 9, 10, 5;
0, 5, 18, 28, 22, 8;
0, 8, 35, 68, 74, 45, 13;
From _Philippe Deléham_, Apr 11 2012: (Start)
Triangle in A209138 begins:
1;
1, 2;
2, 4, 3;
3, 9, 10, 5;
5, 18, 28, 22, 8;
8, 35, 68, 74, 45, 13; (End)
-
nmax = 9; T[n_, n_] := Fibonacci[n+1]; T[, 0] = 0; T[n, 1] := Fibonacci[n]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k] + T[n - 2, k - 1] + T[n - 2, k - 2]; T[, ] = 0;
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
A355387
Number of ways to choose a distinct subsequence of an integer composition of n.
Original entry on oeis.org
1, 2, 5, 14, 37, 98, 259, 682, 1791, 4697, 12303, 32196, 84199, 220087, 575067, 1502176, 3923117, 10244069, 26746171, 69825070, 182276806, 475804961, 1241965456, 3241732629, 8461261457, 22084402087, 57640875725, 150442742575, 392652788250, 1024810764496
Offset: 0
The a(3) = 14 pairings of a composition with a chosen subsequence:
(3)() (3)(3)
(21)() (21)(1) (21)(2) (21)(21)
(12)() (12)(1) (12)(2) (12)(12)
(111)() (111)(1) (111)(11) (111)(111)
The case of strict subsequences is
A236002.
The composable case is
A355384, homogeneous without containment
A355388.
A075900 counts compositions of each part of a partition.
A304961 counts compositions of each part of a strict partition.
A307068 counts strict compositions of each part of a composition.
A336127 counts compositions of each part of a strict composition.
Cf.
A011782,
A022811,
A032020,
A063834,
A133494,
A181591,
A323583,
A331330,
A336128,
A336130,
A336139,
A355382,
A355383.
-
Table[Sum[Length[Union[Subsets[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,6}]
-
lista(n)=my(f=sum(k=1,n,(x^k+x*O(x^n))/(1-x/(1-x)+x^k)));Vec((1-x)/((1-2*x)*(1-f))) \\ Christian Sievers, May 06 2025
A329918
Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 4, 0, 1, 0, 4, 0, 6, 0, 1, 0, 0, 12, 0, 8, 0, 1, 0, 8, 0, 24, 0, 10, 0, 1, 0, 0, 32, 0, 40, 0, 12, 0, 1, 0, 16, 0, 80, 0, 60, 0, 14, 0, 1, 0, 0, 80, 0, 160, 0, 84, 0, 16, 0, 1, 0, 32, 0, 240, 0, 280, 0, 112, 0, 18, 0, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 0, 1;
[3] 0, 2, 0, 1;
[4] 0, 0, 4, 0, 1;
[5] 0, 4, 0, 6, 0, 1;
[6] 0, 0, 12, 0, 8, 0, 1;
[7] 0, 8, 0, 24, 0, 10, 0, 1;
[8] 0, 0, 32, 0, 40, 0, 12, 0, 1;
[9] 0, 16, 0, 80, 0, 60, 0, 14, 0, 1;
The first few polynomials:
p(0,x) = 1;
p(1,x) = x;
p(2,x) = x^2;
p(3,x) = 2*x + x^3;
p(4,x) = 4*x^2 + x^4;
p(5,x) = 4*x + 6*x^3 + x^5;
p(6,x) = 12*x^2 + 8*x^4 + x^6;
Row sums are
A001045 starting with 1, which is
A152046. These are in signed form also the alternating row sums. Diagonal sums are aerated
A133494.
-
using Nemo # Returns row n.
function A329918(row)
R, x = PolynomialRing(ZZ, "x")
function p(n)
n < 3 && return x^n
x*p(n-1) + 2*p(n-2)
end
p = p(row)
[coeff(p, k) for k in 0:row]
end
for row in 0:9 println(A329918(row)) end # prints triangle
-
T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)):
seq(seq(T(n, k), k=0..n), n=0..11);
Comments