cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 86 results. Next

A179119 Decimal expansion of Sum_{p prime} 1/(p*(p+1)).

Original entry on oeis.org

3, 3, 0, 2, 2, 9, 9, 2, 6, 2, 6, 4, 2, 0, 3, 2, 4, 1, 0, 1, 5, 0, 9, 4, 5, 8, 8, 0, 8, 6, 7, 4, 4, 7, 6, 0, 6, 4, 4, 2, 5, 9, 4, 1, 9, 4, 7, 4, 0, 7, 0, 4, 5, 6, 1, 5, 0, 2, 2, 8, 6, 0, 0, 7, 6, 2, 4, 2, 2, 1, 6, 6, 7, 9, 2, 9, 0, 7, 9, 4, 4, 3, 2, 1, 7, 0, 3, 2, 0, 7, 5, 1, 3, 2, 3, 5, 1, 0, 3, 1, 2
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Examples

			0.33022992626420324101.. = 1/(2*3) +1/(3*4) +1/(5*6) + 1/(7*8) +... = sum_{n>=1} 1/ (A000040(n)*A008864(n)).
		

Crossrefs

Cf. A136141 for 1/(p(p-1)), A085548 for 1/p^2.
Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A307379.

Programs

  • Magma
    R:=RealField(103);
    ExhaustSum :=
      function(
        k_min, term
      : IZ := func)
        c:=R!0; k:=k_min;
        repeat
          t:=term(k); c+:=t; k+:=1;
        until IZ(t,k-1);
        return c;
      end function;
    RealField(101)!
    ExhaustSum(2,
      func
        : IZ:=func
        )>);
    // Jason Kimberley, Jan 20 2017
  • Maple
    interface(quiet=true):
    read("transforms") ;
    Digits := 300 ;
    ZetaM := proc(s,M)
        local v,p;
        v := Zeta(s) ;
        p := 2;
        while p <= M do
            v := v*(1-1/p^s) ;
            p := nextprime(p) ;
        end do:
        v ;
    end proc:
    Hurw := proc(a)
            local T,p,x,L,i,Le,pre,preT,v,t,M ;
        T := 40 ;
        preT := 0.0 ;
        while true do
                1/p/(p+a) ;
                subs(p=1/x,%) ;
                exp(%) ;
                t := taylor(%,x=0,T) ;
                L := [] ;
                for i from 1 to T-1 do
                        L := [op(L),evalf(coeftayl(t,x=0,i))] ;
                end do:
                Le := EULERi(L) ;
            M := -a ;
                v := 1.0 ;
                pre := 0.0 ;
                for i from 2 to nops(Le) do
                        pre := log(v) ;
                        v := v*evalf(ZetaM(i,M))^op(i,Le) ;
                        v := evalf(v) ;
                end do:
            pre := (log(v)+pre)/2. ;
            printf("%.105f\n",%) ;
            if abs(1.0-preT/pre)  < 10^(-Digits/3) then
                break;
            end if;
            preT := pre ;
            T := T+10 ;
        end do:
            pre ;
    end proc:
    A179119 := proc()
        Hurw(1) ;
    end proc:
    A179119() ;
  • Mathematica
    digits = 101; S = NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 5]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumalt(k=2,(-1)^k*primezeta(k)) \\ Charles R Greathouse IV, Aug 03 2016
    
  • PARI
    sumeulerrat(1/(p*(p+1))) \\ Amiram Eldar, Mar 18 2021
    

Formula

P(2) - P(3) + P(4) - P(5) + ..., where P is the prime zeta function. - Charles R Greathouse IV, Aug 03 2016

A036689 Product of a prime and the previous number.

Original entry on oeis.org

2, 6, 20, 42, 110, 156, 272, 342, 506, 812, 930, 1332, 1640, 1806, 2162, 2756, 3422, 3660, 4422, 4970, 5256, 6162, 6806, 7832, 9312, 10100, 10506, 11342, 11772, 12656, 16002, 17030, 18632, 19182, 22052, 22650, 24492, 26406, 27722, 29756, 31862, 32580, 36290, 37056, 38612, 39402, 44310
Offset: 1

Views

Author

Keywords

Comments

Records in A002618. - Artur Jasinski, Jan 23 2008
Also records in A174857. - Vladimir Shevelev, Mar 31 2010

Examples

			2*1, 3*2, 5*4, 7*6, 11*10, 13*12, 17*16, ...
		

Crossrefs

Twice the terms of A008837.
Subsequence of A002378 (oblong numbers).
Column 1 of A257251. (Row 1 of A257252.)
Column 2 of A379010.

Programs

Formula

a(n) = prime(n) * (prime(n) - 1).
a(n) = phi(prime(n)^2) = A000010(A001248(n)).
a(n) = prime(n) * phi(prime(n)). - Artur Jasinski, Jan 23 2008
From Reinhard Zumkeller, Sep 17 2011: (Start)
a(n) = A000040(n) * A006093(n) = A001248(n) - A000040(n).
A006530(a(n)) = A000040(n). (End)
a(n) = A009262(prime(n)). - Enrique Pérez Herrero, May 12 2012
a(n) = prime(n)! mod (prime(n)^2). - J. M. Bergot, Apr 10 2014
a(n) = 2*A008837(n). - Antti Karttunen, May 01 2015
Sum_{n>=1} 1/a(n) = A136141. - Amiram Eldar, Nov 09 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)*zeta(3)/zeta(6) (A082695).
Product_{n>=1} (1 - 1/a(n)) = A005596. (End)

Extensions

Deleted two incorrect comments. - N. J. A. Sloane, May 07 2020

A131605 Perfect powers of nonprimes (m^k where m is a nonprime positive integer and k >= 2).

Original entry on oeis.org

1, 36, 100, 144, 196, 216, 225, 324, 400, 441, 484, 576, 676, 784, 900, 1000, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1728, 1764, 1936, 2025, 2116, 2304, 2500, 2601, 2704, 2744, 2916, 3025, 3136, 3249, 3364, 3375, 3600, 3844, 3969, 4225, 4356, 4624
Offset: 1

Views

Author

Daniel Forgues, May 27 2008

Keywords

Comments

Although 1 is a square, is a cube, and so on..., 1 is sometimes excluded from perfect powers since it is not a well-defined power of 1 (1 = 1^k for any k in [2, 3, 4, 5, ...])
From Michael De Vlieger, Aug 11 2025: (Start)
This sequence is A001597 \ A246547, i.e., perfect powers without proper prime powers.
Union of {1} with the intersection of A001597 and A126706, where A126706 is the sequence of numbers that are neither prime powers nor squarefree.
Union of {1} and A286708 \ A052486, i.e., powerful numbers that are not prime powers, without Achilles numbers, but including the empty product. (End)

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^20}, {1}~Join~Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[nn, 3]}, {a, Sqrt[nn/b^3]}], And[Length[#2] > 1, GCD @@ #2 > 1] & @@ {#, FactorInteger[#][[;; , -1]]} &] ] (* Michael De Vlieger, Aug 11 2025 *)
  • PARI
    isok(n) = if (n == 1, return (1), return (ispower(n, ,&np) && (! isprime(np)))); \\ Michel Marcus, Jun 12 2013
    
  • Python
    from sympy import mobius, integer_nthroot, primepi
    def A131605(n):
        def f(x): return int(n-2+x+sum(mobius(k)*((a:=integer_nthroot(x,k)[0])-1)+primepi(a) for k in range(2,x.bit_length())))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 14 2024

Formula

Sum_{n>=1} 1/a(n) = 1 + A072102 - A136141 = 1.10130769935514973882... . - Amiram Eldar, Aug 15 2025

A088529 Numerator of Bigomega(n)/Omega(n).

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 2, 2, 1, 3, 3, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 5, 2, 3, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 3, 6, 1, 1, 1, 3, 1, 1, 1, 5, 1, 1, 3, 3, 1, 1, 1, 5, 4, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 3, 1, 1, 1, 3, 1, 3, 3, 2
Offset: 2

Views

Author

Cino Hilliard, Nov 16 2003

Keywords

Examples

			bigomega(24) / omega(24) = 4/2 = 2, so a(24) = 2.
		

References

  • H. Z. Cao, On the average of exponents, Northeast. Math. J., Vol. 10 (1994), pp. 291-296.

Crossrefs

Cf. A001221, A001222, A070012, A070013, A070014, A088530 (gives the denominator).

Programs

  • Mathematica
    Table[Numerator[PrimeOmega[n]/PrimeNu[n]], {n, 2, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    for(x=2,100,y=bigomega(x)/omega(x);print1(numerator(y)","))
    
  • Python
    from sympy import primefactors, Integer
    def bigomega(n): return 0 if n==1 else bigomega(Integer(n)/primefactors(n)[0]) + 1
    def omega(n): return Integer(len(primefactors(n)))
    def a(n): return (bigomega(n)/omega(n)).numerator
    print([a(n) for n in range(2, 51)]) # Indranil Ghosh, Jul 13 2017

Formula

Let B = number of prime divisors of n with multiplicity, O = number of distinct prime divisors of n. Then a(n) = numerator of B/O.
a(n) = A136565(n) = A181591(n) for n: 2 <= n < 24. - Reinhard Zumkeller, Nov 01 2010
Sum_{k=2..n} a(k)/A088530(k) ~ n + O(n/log(log(n))) (Duncan, 1970). - Amiram Eldar, Oct 14 2022
Sum_{k=2..n} a(k)/A088530(k) = n + c_1 * n/log(log(n)) + c_2 * n/log(log(n))^2 + O(n/log(log(n))^3), where c_1 = A136141 and c_2 = A272531 (Cao, 1994; Finch, 2020). - Amiram Eldar, Dec 15 2022

A129283 a(n) = (arithmetic derivative of n) + n.

Original entry on oeis.org

0, 1, 3, 4, 8, 6, 11, 8, 20, 15, 17, 12, 28, 14, 23, 23, 48, 18, 39, 20, 44, 31, 35, 24, 68, 35, 41, 54, 60, 30, 61, 32, 112, 47, 53, 47, 96, 38, 59, 55, 108, 42, 83, 44, 92, 84, 71, 48, 160, 63, 95, 71, 108, 54, 135, 71, 148, 79, 89, 60, 152, 62, 95, 114, 256, 83, 127, 68
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 07 2007

Keywords

Crossrefs

Programs

Formula

a(n) = A003415(n) + n.
a(n) = A003415(n*A051674(k)) / A051674(k).
a(A129284(n)) > 1, a(A129285(n)) > 1, a(A129286(n)) > 1.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + Sum_{p prime} 1/(p*(p-1)) = 1 + A136141 = 1.773156... . - Amiram Eldar, May 14 2025

A154945 Decimal expansion of Sum_{p} 1/(p^2-1), summed over the primes p = A000040.

Original entry on oeis.org

5, 5, 1, 6, 9, 3, 2, 9, 7, 6, 5, 6, 9, 9, 9, 1, 8, 4, 4, 3, 9, 7, 3, 1, 0, 2, 3, 9, 7, 1, 3, 4, 3, 5, 7, 8, 1, 3, 1, 5, 0, 0, 3, 7, 7, 7, 7, 8, 6, 2, 8, 2, 5, 2, 2, 3, 0, 6, 1, 7, 3, 3, 4, 0, 5, 9, 5, 6, 5, 5, 9, 7, 6, 4, 1, 0, 7, 0, 6, 7, 1, 0, 7, 7, 7, 5, 0, 9, 8, 3, 1, 6, 8, 2, 7, 7, 9, 6, 0, 7, 2, 5, 0, 5, 8
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

By geometric series expansion, the same as the sum over the prime zeta function at even arguments, P(2i), i=1,2,....
(Pi^2/6)*density of A190641, the numbers divisible by exactly one prime with exponent greater than 1. - Charles R Greathouse IV, Aug 02 2016

Examples

			0.551693297656999184439731023971343578131500377778628252230...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; m0 = 2 digits; Clear[rd]; rd[m_] := rd[m] = RealDigits[delta1 = Sum[PrimeZetaP[2n], {n, 1, m}] , 10, digits][[1]]; rd[m0]; rd[m = 2m0];
    While[rd[m] != rd[m-m0], Print[m]; m = m+m0]; Print[N[delta1, digits]]; rd[m] (* Jean-François Alcover, Sep 11 2015, updated Mar 16 2019 *)
  • PARI
    eps()=2.>>bitprecision(1.)
    primezeta(s)=my(t=s*log(2)); sum(k=1, lambertw(t/eps())\t, moebius(k)/k*log(abs(zeta(k*s))))
    sumpos(n=1,primezeta(2*n)) \\ Charles R Greathouse IV, Aug 02 2016
    
  • PARI
    sumeulerrat(1/(p^2-1)) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{k>=1} 1/A084920(k) = Sum_{i>=1} P(2i) = A085548+A085964+A085966+A085968+... = A152447+A085548-A154932.
Equals Sum_{k>=2} 1/A000961(k)^2 = Sum_{k>=2} 1/A056798(k). - Amiram Eldar, Sep 21 2020
Equals (A136141 + A179119)/2. - Artur Jasinski, Mar 31 2025

Extensions

More digits from Jean-François Alcover, Sep 11 2015

A168036 Difference between n' and n, where n' is the arithmetic derivative of n (A003415).

Original entry on oeis.org

0, -1, -1, -2, 0, -4, -1, -6, 4, -3, -3, -10, 4, -12, -5, -7, 16, -16, 3, -18, 4, -11, -9, -22, 20, -15, -11, 0, 4, -28, 1, -30, 48, -19, -15, -23, 24, -36, -17, -23, 28, -40, -1, -42, 4, -6, -21, -46, 64, -35, -5, -31, 4, -52, 27, -39, 36, -35, -27, -58, 32, -60, -29
Offset: 0

Views

Author

Paolo P. Lava, Nov 17 2009

Keywords

Comments

Let k = n'-n. For k = -1 n is a primary pseudoperfect number (A054377), apart from n=1; For k=0 n is p^p, being p a prime number (A051674); For k = 1 n is a Giuga number (A007850).

Crossrefs

Programs

  • Haskell
    a168036 n = a003415 n - n  -- Reinhard Zumkeller, May 22 2015
  • Maple
    with(numtheory);
    A168036:=proc(q)
    local n,p;
    for n from 0 to q do
      print(n*add(op(2,p)/op(1,p),p=ifactors(n)[2])-n); od; end:
    A168036(1000); # Paolo P. Lava, Nov 05 2012
  • Mathematica
    np[k_] := Module[{f, n, m, p}, If[k < 2, np[k] = 0; Return[0], If[PrimeQ[k], np[k] = 1; Return[1], f = FactorInteger[k, 2]; m = f[[1, 1]]; n = k/m; p = m np[n] + n np[m]; np[k] = p; Return[p]]]];
    Table[np[n] - n, {n, 0, 100}] (* Robert Price, Mar 14 2020 *)

Formula

a(A083347(n)) < 0; a(A051674(n)) = 0; a(A083348(n)) > 0. - Reinhard Zumkeller, May 22 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = -1 + Sum_{p prime} 1/(p*(p-1)) = A136141 - 1 = -0.226843... . - Amiram Eldar, Dec 08 2023

A275812 Sum of exponents larger than one in the prime factorization of n: A001222(n) - A056169(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 2, 2, 4, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2016

Keywords

Crossrefs

Differs from A212172 for the first time at n=36, where a(36)=4, while A212172(36)=2.

Programs

  • Mathematica
    Table[Total@ Map[Last, Select[FactorInteger@ n, Last@ # > 1 &] /. {} -> {{0, 0}}], {n, 120}] (* Michael De Vlieger, Aug 11 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, if (f[k,2] > 1, f[k,2])); \\ Michel Marcus, Jul 19 2017
  • Perl
    sub a275812 { vecsum( grep {$> 1} map {$->[1]} factor_exp(shift) ); } # Dana Jacobsen, Aug 15 2016
    
  • Python
    from sympy import factorint, primefactors
    def a001222(n):
        return 0 if n==1 else a001222(n//primefactors(n)[0]) + 1
    def a056169(n):
        f=factorint(n)
        return 0 if n==1 else sum(1 for i in f if f[i]==1)
    def a(n):
        return a001222(n) - a056169(n)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 19 2017
    

Formula

a(1) = 0, and for n > 1, if A067029(n)=1 [when n is one of the terms of A247180], a(n) = a(A028234(n)), otherwise a(n) = A067029(n)+a(A028234(n)).
a(n) = A001222(n) - A056169(n).
a(n) = A001222(A057521(n)). - Antti Karttunen, Jul 19 2017
From Amiram Eldar, Sep 28 2023: (Start)
Additive with a(p) = 0, and a(p^e) = e for e >= 2.
a(n) >= 0, with equality if and only if n is squarefree (A005117).
a(n) <= A001222(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^2 + 1/(p*(p-1))) = A085548 + A136141 = 1.22540408909086062637... . (End)
a(n) = A046660(n) + A056170(n). - Amiram Eldar, Jan 09 2024

A380840 Decimal expansion of Sum_{p prime} 1/(p-1)^3.

Original entry on oeis.org

1, 1, 4, 7, 5, 2, 9, 0, 9, 7, 7, 5, 8, 5, 8, 0, 0, 4, 6, 9, 3, 3, 2, 8, 3, 8, 0, 6, 2, 8, 2, 1, 3, 0, 4, 0, 1, 6, 4, 4, 7, 6, 4, 7, 3, 5, 5, 2, 5, 1, 1, 2, 2, 5, 5, 2, 7, 5, 8, 2, 4, 1, 2, 3, 9, 5, 0, 5, 3, 3, 5, 9, 0, 4, 5, 5, 0, 4, 5, 4, 3, 1, 4, 7, 2, 6, 5, 2, 2, 8, 7, 3, 7, 2, 6, 9, 0, 9, 4, 6, 7, 5, 1, 6, 8, 0
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2025

Keywords

Examples

			1.1475290977585800469332838..,
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p-1)^3)

A083342 Decimal expansion of average deviation of the total number of prime factors.

Original entry on oeis.org

1, 0, 3, 4, 6, 5, 3, 8, 8, 1, 8, 9, 7, 4, 3, 7, 9, 1, 1, 6, 1, 9, 7, 9, 4, 2, 9, 8, 4, 6, 4, 6, 3, 8, 2, 5, 4, 6, 7, 0, 3, 0, 7, 9, 8, 4, 3, 4, 4, 3, 8, 5, 2, 5, 4, 5, 0, 3, 0, 7, 0, 2, 8, 1, 2, 8, 1, 6, 3, 3, 5, 3, 9, 3, 8, 6, 6, 0, 1, 6, 0, 7, 5, 4, 7, 9, 4, 1, 3, 9, 0, 2, 5, 7, 5, 6, 7, 4, 6, 9, 3, 8
Offset: 1

Views

Author

Eric W. Weisstein, Sep 25 2003

Keywords

Comments

Or, decimal expansion of constant B2 from the summatory function of the restricted divisor function.
The constant A in the asymptotic formula Sum_{prime p <= n} 1/(p-1) = log(log(n)) + A + O(1/log(n)) (Jakimczuk, 2017). - Amiram Eldar, Mar 18 2024

Examples

			1.03465388189743791161979429846463825467030798434438525450307...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 94-98.
  • József Sándor and Borislav Crstici, Handbook of Number Theory II, Kluwer Academic Publishers, 2004, p. 155, Chapter V, 1) b).

Crossrefs

Programs

  • Mathematica
    digits = 102; Mp = EulerGamma - NSum[PrimeZetaP[n]/n - PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[Mp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)

Formula

Equals A077761 + A136141. - Jean-François Alcover, Sep 02 2015
Equals gamma + Sum_{p prime} (log(1-1/p) + 1/(p-1)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
From Amiram Eldar, Mar 18 2024: (Start)
Equals gamma + Sum_{k>=2} phi(k) * log(zeta(k)) / k, where phi = A000010.
Equals gamma - Sum_{p prime} 1/(p-1)^2 + Sum_{k>=2} J_2(k) * log(zeta(k)) / k, where J_2 = A007434.
Both formulas are from Jakimczuk (2017). (End)
Previous Showing 11-20 of 86 results. Next