cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 51 results. Next

A033210 Primes of the form x^2+13*y^2.

Original entry on oeis.org

13, 17, 29, 53, 61, 101, 113, 157, 173, 181, 233, 257, 269, 277, 313, 337, 373, 389, 433, 521, 569, 601, 641, 653, 673, 677, 701, 757, 797, 809, 829, 857, 881, 937, 953, 997, 1013, 1049, 1069, 1093, 1109, 1117
Offset: 1

Views

Author

Keywords

Comments

First differences are multiples of 4 (which follows from set of differences of the moduli in the Noe formula). Minimal difference 4 occurs at a(1)=17, a(25)=673, a(48)=1297, etc. - Zak Seidov, Oct 04 2014

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Cf. A139643, A248212 (x) and A248213 (y).

Programs

  • Mathematica
    QuadPrimes2[1, 0, 13, 10000] (* see A106856 *)
  • PARI
    select(n->vecsearch([1,9,13,17,25,29,49],n%52), primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    
  • PARI
    is_A033210(n)={vecsearch([1,9,13,17,25,29,49],n%52)&&isprime(n)} \\ setsearch() is still slower by a factor > 2. - M. F. Hasler, Oct 04 2014

Formula

Same as primes congruent to {1, 9, 13, 17, 25, 29, or 49} (mod 52). - T. D. Noe, Apr 29 2008 [See e.g. Cox, p. 36. - N. J. A. Sloane, May 27 2014]
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A033201 Primes of the form x^2 + 10*y^2.

Original entry on oeis.org

11, 19, 41, 59, 89, 131, 139, 179, 211, 241, 251, 281, 331, 379, 401, 409, 419, 449, 491, 499, 521, 569, 571, 601, 619, 641, 659, 691, 739, 761, 769, 809, 811, 859, 881, 929, 971, 1009, 1019, 1049, 1051, 1091, 1129, 1171, 1201, 1249, 1259, 1289, 1291, 1321, 1361, 1409, 1451, 1459, 1481
Offset: 1

Views

Author

Keywords

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 36.

Crossrefs

Cf. A139643.
Primes in A020673.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | NormEquation(10,p) eq true]; // Bruno Berselli, Jul 03 2016
  • Mathematica
    Clear[f,lst,p,x,y]; f[x_,y_]:=x^2+10*y^2; lst={};Do[Do[p=f[x,y];If[PrimeQ[p]&&p<7212,AppendTo[lst,p]],{y,0,6!}],{x,0,6!}];Take[Union[lst],222] (* Vladimir Joseph Stephan Orlovsky, Aug 04 2009 *)
    QuadPrimes2[1, 0, 10, 10000] (* see A106856 *)
  • PARI
    select(n->vecsearch([1,9,11,19],n%40), primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    

Formula

Same as primes congruent to 1, 9, 11, or 19 mod 40. See, e.g., Cox, p. 36.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A033199 Primes of form x^2+6*y^2.

Original entry on oeis.org

7, 31, 73, 79, 97, 103, 127, 151, 193, 199, 223, 241, 271, 313, 337, 367, 409, 433, 439, 457, 463, 487, 577, 601, 607, 631, 673, 727, 751, 769, 823, 919, 937, 967, 991, 1009, 1033, 1039, 1063, 1087, 1129, 1153, 1201, 1231, 1249, 1279, 1297, 1303, 1321, 1327, 1399, 1423, 1447, 1471, 1489, 1543
Offset: 1

Views

Author

Keywords

Comments

Appears to also be the primes p such that p mod 6 = 1 and Fibonacci(p) mod 6 = 1. - Gary Detlefs, May 26 2014

Crossrefs

Cf. A139643, primes in A002481. Cf. A107006, A107008.

Programs

  • Magma
    [p: p in PrimesUpTo(1600) | NormEquation(6,p) eq true]; // Bruno Berselli, Jul 03 2016
  • Mathematica
    f[x_, y_] := x^2 + 6*y^2; lst = {}; Do[p = f[x, y]; If[ PrimeQ[ p], AppendTo[ lst, p]], {y, 20}, {x, 50}]; Take[ Union[ lst], 50] (* Vladimir Joseph Stephan Orlovsky, Aug 04 2009 *)
  • PARI
    select(n->n%24==1||n%24==7, primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    

Formula

Same as primes congruent to 1 or 7 mod 24. See e.g. Cox, p. 36.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

Extensions

Removed defective Mma program; extended the b-file using Charles R Greathouse's PARI program. - N. J. A. Sloane, Jun 06 2014

A033207 Primes of the form x^2 + 7*y^2.

Original entry on oeis.org

7, 11, 23, 29, 37, 43, 53, 67, 71, 79, 107, 109, 113, 127, 137, 149, 151, 163, 179, 191, 193, 197, 211, 233, 239, 263, 277, 281, 317, 331, 337, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 457, 463, 487, 491
Offset: 1

Views

Author

Keywords

Comments

Except for a(1) = 7, these are the primes which can be written in the form a^2 + 7*b^2 with a > 0 and b > 0. - V. Raman, Sep 08 2012
These are the primes p for which p^3 - 1 is divisible by 7, with two exceptions: p = 2 is not in the sequence even though 2^3 - 1 is divisible by 7, and p = 7 is in the sequence even though 7^3 - 1 is not divisible by 7. Except for p = 7, if p^3 - 1 is not divisible by 7, it is congruent to 5 (mod 7). - Richard R. Forberg, Jun 03 2013

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Essentially the same as A045373. Primes in A020670.

Programs

Formula

Primes congruent to {1, 7, 9, 11, 15, 23, 25} (mod 28). - T. D. Noe, Apr 29 2008

A106904 Primes of the form x^2-xy+13y^2, with x and y nonnegative.

Original entry on oeis.org

13, 19, 43, 67, 103, 127, 151, 157, 223, 229, 271, 307, 331, 349, 373, 409, 421, 433, 457, 463, 523, 577, 613, 631, 661, 727, 733, 739, 757, 769, 829, 859, 883, 919, 937, 967, 1021, 1033, 1039, 1063, 1069, 1087, 1123, 1171, 1237, 1249, 1279, 1291, 1327
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-51.
Also: Primes which are squares (mod 51). Differs from the subsequence A106903 (because x^2+xy+y^2 = (x+y)^2 - (x+y)y + y^2) from a(20) = 463 on, A106903(20) = 523. Terms which are not in A106903 are: 463, 631, 1033, 1039, 1279, 1291,... Up to 1279 these are also in A139643. Cf. also A191034. - M. F. Hasler, Jan 15 2016

Programs

  • Mathematica
    QuadPrimes2[1, -1, 13, 10000] (* see A106856 *)
  • PARI
    select(p->issquare(Mod(p,51))&&isprime(p),[1..1500]) \\ See A106903 for alternative code. - M. F. Hasler, Jan 15 2016

A139502 Primes of the form x^2 + 22x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

241, 409, 601, 769, 1009, 1129, 1201, 1249, 1321, 1489, 1609, 1801, 2089, 2161, 2281, 2521, 2689, 3001, 3049, 3121, 3169, 3361, 3529, 3769, 3889, 4129, 4201, 4441, 4561, 4729, 4801, 4969, 5209, 5281, 5449, 5521, 5569, 5641, 5689, 5881, 6121, 6361, 6481
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 120y^2. - T. D. Noe, Apr 29 2008
Also primes of the form x^2+240y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 181, 2X1, 421, 541, 701, 7X1, 841, 881, 921, X41, E21, 1061, 1261, 1301, 13X1, 1561, 1681, 18X1, 1921, 1981, 1X01, 1E41, 2061, 2221, 2301, 2481, 2521, 26X1, 2781, 28X1, 2941, 2X61, 3021, 3081, 31X1, 3241, 3281, 3321, 3361, 34X1, 3661, 3821, 3901, where X is 10 and E is 11. Moreover, the discriminant is 340. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 120 in {1, 49}]; // Vincenzo Librandi, Jul 28 2012
  • Mathematica
    QuadPrimes2[1, 0, 120, 10000] (* see A106856 *)

Formula

The primes are congruent to {1, 49} (mod 120). - T. D. Noe, Apr 29 2008

A033202 Primes of form x^2+93*y^2.

Original entry on oeis.org

97, 109, 157, 193, 349, 373, 397, 421, 541, 577, 661, 733, 769, 853, 877, 937, 997, 1033, 1093, 1117, 1213, 1237, 1249, 1321, 1489, 1597, 1609, 1621, 1657, 1693, 1741, 1777, 1861, 1993, 2017, 2029, 2053, 2113, 2221, 2281, 2341, 2389, 2437, 2521, 2593, 2713, 2797, 2857, 2953
Offset: 1

Views

Author

Keywords

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Cf. A139643.

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 372 in {1,25,49,97, 109,121,133,157,169,193,205,253,289,349,361}]; // Vincenzo Librandi, Jul 02 2016
    
  • Magma
    [p: p in PrimesUpTo(3000) | NormEquation(93,p) eq true]; // Bruno Berselli, Jul 03 2016
  • Mathematica
    QuadPrimes2[1, 0, 93, 10000] (* see A106856 *)
    Select[Prime@Range[500], MemberQ[{1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}, Mod[#, 372]] &] (* Vincenzo Librandi, Jul 02 2016 *)

Formula

The primes are congruent to {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361} (mod 372). - T. D. Noe, Apr 29 2008

A139506 Primes of the form x^2 + 26x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

193, 337, 457, 673, 1009, 1033, 1129, 1201, 1297, 1801, 1873, 2017, 2137, 2377, 2473, 2521, 2689, 2713, 2857, 3049, 3217, 3313, 3361, 3529, 3697, 3889, 4057, 4153, 4201, 4561, 4657, 4729, 4993, 5209, 5233, 5569, 5737, 5881, 6073, 6217, 6337, 6553, 6577
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 168y^2. - T. D. Noe, Apr 29 2008
In base 12, the sequence is 141, 241, 321, 481, 701, 721, 7X1, 841, 901, 1061, 1101, 1201, 12X1, 1461, 1521, 1561, 1681, 16X1, 17X1, 1921, 1X41, 1E01, 1E41, 2061, 2181, 2301, 2421, 24X1, 2521, 2781, 2841, 28X1, 2X81, 3021, 3041, 3281, 33X1, 34X1, 3621, 3721, 3801, 3961, 3981, where X is 10 and E is 11. Moreover, the discriminant is 480. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 26; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]

Formula

The primes are congruent to {1, 25, 121} (mod 168). - T. D. Noe, Apr 29 2008

A139644 Primes of the form x^2 + 105*y^2.

Original entry on oeis.org

109, 421, 541, 709, 1009, 1129, 1201, 1381, 1429, 1549, 1621, 1789, 1801, 2221, 2269, 2389, 2521, 2689, 3049, 3061, 3109, 3229, 3301, 3361, 3469, 3529, 3889, 4201, 4561, 4621, 4729, 4789, 4909, 5209, 5569, 5581, 5749, 5821, 5881, 6301
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant=-420. See A139643 for more information.
The primes are congruent to {1, 109, 121, 169, 289, 361} (mod 420).

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 420 in {1, 109, 121, 169, 289, 361}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=105; [p: p in PrimesUpTo(7000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Mathematica
    QuadPrimes2[1, 0, 105, 10000] (* see A106856 *)

A139645 Primes of the form x^2 + 112*y^2.

Original entry on oeis.org

113, 137, 193, 233, 281, 337, 401, 449, 457, 569, 617, 641, 673, 809, 953, 977, 1009, 1033, 1129, 1201, 1289, 1297, 1409, 1481, 1801, 1873, 1913, 2017, 2081, 2129, 2137, 2153, 2297, 2377, 2417, 2473, 2521, 2633, 2657, 2689, 2713, 2753, 2801
Offset: 1

Views

Author

T. D. Noe, Apr 29 2008

Keywords

Comments

Discriminant is -448. See A139643 for more information.
Primes of the form 8*n + 1 which cannot be expressed as 7*k - 1, 7*k - 2, or 7*k - 4. a(n)^3 == 1 (mod 56). - Gary Detlefs, Jan 26 2014
The primes are congruent to {1, 9, 25} (mod 56).

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 56 in {1, 9, 25}]; // Vincenzo Librandi, Jul 28 2012
    
  • Magma
    k:=112; [p: p in PrimesUpTo(3000) | NormEquation(k, p) eq true]; // Bruno Berselli, Jun 01 2016
  • Maple
    f:=n-> ceil((8*n+1)/7)-(8*n+1): for n from 1 to 350 do if isprime(8*n+1) and f(n)<>1 and f(n)<>2 and f(n)<>4 then print(8*n+1) fi od. # Gary Detlefs, Jan 26 2014
  • Mathematica
    QuadPrimes2[1, 0, 112, 10000] (* see A106856 *)
Previous Showing 11-20 of 51 results. Next