cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A053462 Number of positive squarefree integers less than 10^n.

Original entry on oeis.org

0, 6, 61, 608, 6083, 60794, 607926, 6079291, 60792694, 607927124, 6079270942, 60792710280, 607927102274, 6079271018294, 60792710185947, 607927101854103, 6079271018540405, 60792710185403794, 607927101854022750, 6079271018540280875, 60792710185402613302
Offset: 0

Views

Author

Harvey P. Dale, Aug 01 2001

Keywords

Examples

			There are 608 squarefree integers smaller than 1000.
		

Crossrefs

Apart from first two terms, same as A071172.
Binary counterpart is A143658. - Gerard P. Michon, Apr 30 2009

Programs

  • Mathematica
    a[n_] := Module[{t=10^n-1}, Sum[MoebiusMu[k]Floor[t/k^2], {k, 1, Sqrt[t]}]]
  • PARI
    a(n)=sum(d=1,sqrtint(n=10^n-1), n\d^2*moebius(d)) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(s); forsquarefree(d=1,sqrtint(n=10^n-1), s += n\d[1]^2 * moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A053462(n):
        m = 10**n-1
        return sum(mobius(k)*(m//k**2) for k in range(1, isqrt(m)+1)) # Chai Wah Wu, Jun 01 2024

Formula

a(n)/10^n = (6/Pi^2)*(1+o(1)), cf. A059956.
a(n) = A071172(n) - [n <= 1] where [] is the Iverson bracket. - Chai Wah Wu, Jun 01 2024

Extensions

More terms from Dean Hickerson and Vladeta Jovovic, Aug 06 2001
One more term from Jud McCranie, Sep 01 2005
a(0)=0 and a(14)-a(17) from Gerard P. Michon, Apr 30 2009
a(18)-a(20) from Charles R Greathouse IV, Jan 08 2018

A373415 Maximum of the n-th maximal run of squarefree numbers.

Original entry on oeis.org

3, 7, 11, 15, 17, 19, 23, 26, 31, 35, 39, 43, 47, 51, 53, 55, 59, 62, 67, 71, 74, 79, 83, 87, 89, 91, 95, 97, 103, 107, 111, 115, 119, 123, 127, 131, 134, 139, 143, 146, 149, 151, 155, 159, 161, 163, 167, 170, 174, 179, 183, 187, 191, 195, 197, 199, 203, 206
Offset: 1

Views

Author

Gus Wiseman, Jun 05 2024

Keywords

Comments

The minimum is given by A072284.
A run of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by one.
Consists of all squarefree numbers k such that k + 1 is not squarefree.

Examples

			Row-maxima of:
   1   2   3
   5   6   7
  10  11
  13  14  15
  17
  19
  21  22  23
  26
  29  30  31
  33  34  35
  37  38  39
  41  42  43
  46  47
  51
  53
  55
  57  58  59
		

Crossrefs

Functional neighbors: A006093, A007674, A067774, A072284, A120992, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Last/@Split[Select[Range[100],SquareFreeQ],#1+1==#2&]//Most

Formula

a(n) = A070321(A072284(n+1) - 1).

A160113 Number of cubefree integers not exceeding 2^n.

Original entry on oeis.org

1, 2, 4, 7, 14, 27, 54, 107, 214, 427, 854, 1706, 3410, 6815, 13629, 27259, 54521, 109042, 218080, 436158, 872318, 1744638, 3489278, 6978546, 13957092, 27914186, 55828364, 111656716, 223313428, 446626866, 893253744, 1786507472, 3573014938, 7146029910, 14292059832
Offset: 0

Views

Author

Gerard P. Michon, May 02 2009

Keywords

Comments

An alternate definition specifying "less than 2^n" would yield the same sequence except for the first 3 terms: 0,1,3,7,14,27,54,107, etc. (since powers of 2 beyond 8 are not cubefree).
The limit of a(n)/2^n is the inverse of Apery's constant, 1/zeta(3) [see A088453].

Examples

			a(0)=1 because there is just one cubefree integer (1) not exceeding 2^0 = 1.
a(3)=7 because 1,2,3,4,5,6,7 are cubefree but 8 is not.
		

Crossrefs

Cf. A004709 (cubefree numbers), A160112 (decimal counterpart for cubefree integers), A143658 (binary counterpart for squarefree integers), A071172 & A053462 (decimal counterpart for squarefree integers).
Cf. A060431.

Programs

  • Haskell
    a160113 = a060431 . (2 ^)  -- Reinhard Zumkeller, Jul 27 2015
    
  • Mathematica
    a[n_] := Sum[ MoebiusMu[i]*Floor[2^n/i^3], {i, 1, 2^(n/3)}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Dec 20 2011, from formula *)
    Module[{nn=20,mu},mu=Table[If[Max[FactorInteger[n][[All,2]]]<3,1,0],{n,2^nn}];Table[Total[Take[mu,2^k]],{k,0,nn}]] (* The program generates the first 20 terms of the sequence. To get more, increase the value (constant) for nn, but the program may take a long time to run. *) (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A160113(n): return sum(mobius(k)*((1<Chai Wah Wu, Aug 06 2024
    
  • Python
    from bitarray import bitarray
    from sympy import integer_nthroot
    def A160113(n): # faster program
        q = 1<Chai Wah Wu, Aug 06 2024

Formula

a(n) = Sum_{i=1..2^(n/3)} A008683(i)*floor(2^n/i^3).

A373414 Sum of the n-th maximal run of nonsquarefree numbers differing by one.

Original entry on oeis.org

4, 17, 12, 16, 18, 20, 49, 55, 32, 36, 40, 89, 147, 52, 54, 56, 60, 127, 68, 72, 151, 161, 84, 88, 90, 92, 96, 297, 104, 108, 112, 233, 241, 375, 128, 132, 271, 140, 144, 295, 150, 305, 156, 160, 162, 164, 337, 343, 351, 180, 184, 377, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2024

Keywords

Comments

The length of this run is given by A053797.
A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one.

Examples

			Row-sums of:
   4
   8   9
  12
  16
  18
  20
  24  25
  27  28
  32
  36
  40
  44  45
  48  49  50
		

Crossrefs

The partial sums are a subset of A329472.
Functional neighbors: A053797, A053806, A054265, A373406, A373412, A373413.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.

Programs

  • Mathematica
    Total/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1==#2&]//Most

A160112 Number of cubefree integers not exceeding 10^n.

Original entry on oeis.org

1, 9, 85, 833, 8319, 83190, 831910, 8319081, 83190727, 831907372, 8319073719, 83190737244, 831907372522, 8319073725828, 83190737258105, 831907372580692, 8319073725807178, 83190737258070643, 831907372580707771
Offset: 0

Views

Author

Gerard P. Michon, May 02 2009, May 06 2009

Keywords

Comments

An alternate definition specifying "less than 10^n" would yield the same sequence except for the first 3 terms: 0, 8, 84, 833, 8319, etc. (since powers of 10 beyond 1000 are not cubefree anyhow).
The limit of a(n)/10^n is the inverse of Apery's constant, 1/zeta(3), whose digits are given by A088453.

Examples

			a(0)=1 because 1 <= 10^0 is not a multiple of the cube of a prime.
a(1)=9 because the 9 numbers 1,2,3,4,5,6,7,9,10 are cubefree; 8 is not.
a(2)=85 because there are 85 cubefree integers equal to 100 or less.
a(3)=833 because there are 833 cubefree integers below 1000 (which is not cubefree itself).
		

Crossrefs

A004709 (cubefree numbers). A088453 (limit of the string of digits). A160113 (binary counterpart for cubefree integers). A071172 & A053462 (decimal counterpart for squarefree integers). A143658 (binary counterpart for squarefree integers).

Programs

  • Maple
    with(numtheory): A160112:=n->add(mobius(i)*floor(10^n/(i^3)), i=1..10^n): (1,9,85,seq(A160112(n), n=3..5)); # Wesley Ivan Hurt, Aug 01 2015
  • Mathematica
    Table[ Sum[ MoebiusMu[x]*Floor[10^n/(x^3)], {x, 10^(n/3)}], {n, 0, 18}] (* Robert G. Wilson v, May 27 2009 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A160112(n): return sum(mobius(k)*(10**n//k**3) for k in range(1, integer_nthroot(10**n,3)[0]+1)) # Chai Wah Wu, Aug 06 2024
    
  • Python
    from bitarray import bitarray
    from sympy import integer_nthroot
    def A160112(n): # faster program
        q = 10**n
        m = integer_nthroot(q,3)[0]+1
        a, b = bitarray(m), bitarray(m)
        a[1], p, i, c = 1, 2, 4, q-sum(q//k**3 for k in range(2,m))
        while i < m:
            j = 2
            while i < m:
                if j==p:
                    c -= (b[i]^1 if a[i] else -1)*(q//i**3)
                    j, a[i], b[i] = 0, 1, 1
                else:
                    t1, t2 = a[i], b[i]
                    if (t1&t2)^1:
                        a[i], b[i] = (t1^1)&t2, ((t1^1)&t2)^1
                        c += (t2 if t1 else 2)*(q//i**3) if (t1^1)&t2 else (t2-2 if t1 else 0)*(q//i**3)
                i += p
                j += 1
            p += 1
            while a[p]|b[p]:
                p += 1
            i = p<<1
        return c # Chai Wah Wu, Aug 06 2024

Formula

a(n) = Sum_{i=1..floor(10^(n/3))} A008683(i)*floor(10^n/i^3).

A372403 Number of k < 2^n that are neither squarefree nor prime powers.

Original entry on oeis.org

1, 5, 16, 37, 83, 178, 374, 772, 1565, 3160, 6361, 12770, 25599, 51265, 102634, 205374, 410873, 821924, 1644070, 3288433, 6577231, 13154868, 26310347, 52621521, 105244142, 210489792, 420981295, 841964929, 1683933254, 3367871086, 6735748322, 13471504796, 26943020642
Offset: 4

Views

Author

Michael De Vlieger, Jun 09 2024

Keywords

Comments

Analogous to A143658 (number of squarefree k <= 2^n) and A182908 (position of 2^n among prime powers A246655).

Examples

			Let quality Q represent a number k that is neither squarefree nor prime power. For instance, Q(k) is true if and only if Omega(k) > omega(k) > 1, i.e., A001222(k) > A001221(k) > 1.
a(4) = 1 since there is one number k = 12 such that Q(k) is true; 12 < 2^4.
a(5) = 5 since there are 5 numbers k such that Q(k) is true; {12, 18, 20, 24, 28} are less than 2^5.
a(6) = 16 since A126706(16) < 2^6 < A126706(17), etc.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      nops(F) > 1 and max(F[..,2]) > 1
    end proc:
    R:= NULL: v:= 0:
    for i from 4 to 20 do
      v:= v + nops(select(filter, [$2^(i-1)+1 .. 2^i-1]));
      R:= R,v;
    od:
    R; # Robert Israel, Jun 09 2024
  • Mathematica
    Table[2^n - Sum[PrimePi@Floor[2^(n/k)], {k, 2, n}] - Sum[MoebiusMu[k]*Floor[#/(k^2)], {k, Floor[Sqrt[#]]}] &[2^n], {n, 4, 36} ] (* Michael De Vlieger, Jan 24 2025 *)
  • Python
    from math import isqrt
    from sympy import mobius, nextprime, integer_log
    def A372403(n):
        m, p = (1<Chai Wah Wu, Jun 10 2024

Formula

a(n) = 2^n - A036386(n) - A143658(n). - Michael De Vlieger, Jan 24 2025

Extensions

a(30) onwards from Chai Wah Wu, Jun 10 2024

A158341 a(n) = A013928(A002110(n)).

Original entry on oeis.org

0, 1, 4, 18, 128, 1404, 18261, 310346, 5896727, 135624239, 3933101823, 121926157640, 4511267827531, 184961980943492, 7953365180610400, 373808163488684049, 19811832664899731265, 1168898127229083969892
Offset: 0

Views

Author

Mats Granvik, Mar 16 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-1 + Sum[MoebiusMu[k]*Floor[#/(k^2)], {k, Floor[Sqrt[#]]}] &[Product[Prime[i], {i, n}]], {n, 0, 12}] (* Michael De Vlieger, Jan 24 2025 *)
  • PARI
    a(n) = my(t=vecprod(primes(n))-1); sum(i=1, sqrtint(t), t\i^2*moebius(i)); \\ Jinyuan Wang, Jan 24 2025
    
  • Python
    from math import isqrt
    from sympy import primorial, mobius
    def A158341(n):
        if n == 0: return 0
        m = primorial(n)-1
        return sum(mobius(k)*(m//k**2) for k in range(1,isqrt(m)+1)) # Chai Wah Wu, Jan 25 2025

Formula

a(n) = -1 + Sum_{i=1..floor(sqrt(A002110(n)))} moebius(i)*floor(A002110(n)/i^2). - Jinyuan Wang, Jan 24 2025

Extensions

Extended and offset corrected by Max Alekseyev, Sep 13 2009
a(15) from Michael De Vlieger, Jan 24 2025
a(16)-a(17) from Chai Wah Wu, Jan 25 2025

A373124 Sum of indices of primes between powers of 2.

Original entry on oeis.org

1, 2, 7, 11, 45, 105, 325, 989, 3268, 10125, 33017, 111435, 369576, 1277044, 4362878, 15233325, 53647473, 189461874, 676856245, 2422723580, 8743378141, 31684991912, 115347765988, 421763257890, 1548503690949, 5702720842940, 21074884894536, 78123777847065
Offset: 0

Views

Author

Gus Wiseman, May 31 2024

Keywords

Comments

Sum of k such that 2^n+1 <= prime(k) <= 2^(n+1).

Examples

			Row-sums of the sequence of all positive integers as a triangle with row-lengths A036378:
   1
   2
   3  4
   5  6
   7  8  9 10 11
  12 13 14 15 16 17 18
  19 20 21 22 23 24 25 26 27 28 29 30 31
  32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
		

Crossrefs

For indices of primes between powers of 2:
- sum A373124 (this sequence)
- length A036378
- min A372684 (except initial terms), delta A092131
- max A007053
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658

Programs

  • Mathematica
    Table[Total[PrimePi/@Select[Range[2^(n-1)+1,2^n],PrimeQ]],{n,10}]
  • PARI
    ip(n) = primepi(1<A007053
    t(n) = n*(n+1)/2; \\ A000217
    a(n) = t(ip(n+1)) - t(ip(n)); \\ Michel Marcus, May 31 2024

A376164 Maximum of the n-th maximal run of nonsquarefree numbers (increasing by 1 at a time).

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 40, 45, 50, 52, 54, 56, 60, 64, 68, 72, 76, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 117, 121, 126, 128, 132, 136, 140, 144, 148, 150, 153, 156, 160, 162, 164, 169, 172, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2024

Keywords

Examples

			The maximal runs of nonsquarefree numbers begin:
       4
     8   9
      12
      16
      18
      20
    24  25
    27  28
      32
      36
      40
    44  45
  48  49  50
		

Crossrefs

For length instead of maximum we have A053797 (firsts A373199).
For lengths of anti-runs we have A373409 (firsts A373573).
For sum instead of maximum we have A373414, anti A373412.
For minimum instead of maximum we have A053806, anti A373410.
For anti-runs instead of runs we have A068781.
For squarefree instead of nonsquarefree we have A373415, anti A007674.
For nonprime instead of nonsquarefree we have A006093 with 2 removed.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147, sums A329472.
A061398 counts squarefree numbers between primes, nonsquarefree A061399.
A120992 gives squarefree run-lengths, anti A373127 (firsts A373128).
A373413 adds up each maximal run of squarefree numbers, min A072284.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.

Programs

  • Mathematica
    Max/@Split[Select[Range[100],!SquareFreeQ[#]&],#1+1==#2&]//Most

A256942 Number of odd squarefree numbers <= 2^n.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 26, 52, 105, 209, 415, 830, 1661, 3321, 6641, 13279, 26565, 53123, 106237, 212488, 424973, 849945, 1699889, 3399761, 6799540, 13599124, 27198203, 54396423, 108792774, 217585510, 435171212, 870342371, 1740684723, 3481369358, 6962738693, 13925477442
Offset: 0

Views

Author

Robert Israel, Apr 13 2015

Keywords

Comments

Number of oddly squarefree (A122132) numbers in each new tier > 2^(n-1). - Travis Scott, Jan 14 2023
a(n) is also the number of even squarefree numbers <= 2^(n+1). - Amiram Eldar, Feb 20 2023

Examples

			For n=4 there are 7 odd squarefree numbers <= 2^4, namely 1,3,5,7,11,13,15.
For oddly squarefree we have 2^3 < 10,11,12,13,14,15,16 <= 2^4.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; local L ; L := convert(n, base, 2) ; (2*n - add( L[i]*(-1)^i, i=1..nops(L)))/3 ; end proc:
    a:= n -> add(numtheory:-mobius(i)*g(floor(2^n/i^2)),i=1..floor(2^(n/2))):
    seq(a(n),n=0..32);
  • Mathematica
    A143658[n_] := Sum[MoebiusMu[i] Floor[2^n/i^2], {i, 1, 2^(n/2)}];
    a[n_] := Sum[(-1)^j A143658[n-j], {j, 0, n}];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Sep 22 2022 *)

Formula

a(n) = Sum_{j=0..n} (-1)^j*A143658(n-j).
a(n) = (2/3) * A143658(n) + (1/3) * Sum_{i=1..floor(2^(n/2))} A008683(i)*A065359(floor(2^n/i^2)).
a(n) + a(n+1) = A143658(n+1).
a(n) ~ 2^(n+2)/Pi^2. - Amiram Eldar, Feb 20 2023

Extensions

a(33)-a(35) from Amiram Eldar, Feb 20 2023
Previous Showing 21-30 of 30 results.