cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A344587 Deficiency of prime-shifted n: a(n) = 2*A003961(n) - sigma(A003961(n)).

Original entry on oeis.org

1, 2, 4, 5, 6, 6, 10, 14, 19, 10, 12, 12, 16, 18, 22, 41, 18, 26, 22, 22, 38, 22, 28, 30, 41, 30, 94, 42, 30, 18, 36, 122, 46, 34, 58, 47, 40, 42, 62, 58, 42, 42, 46, 52, 102, 54, 52, 84, 109, 66, 70, 72, 58, 126, 70, 114, 86, 58, 60, 6, 66, 70, 178, 365, 94, 54, 70, 82, 110, 78, 72, 110, 78, 78, 148, 102, 118, 78
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

First negative value occurs as a(120) = -30.
Questions: Which subsets of natural numbers generate the "cut sigmoid" graph(s) that cross the X-axis in the (lowermost) scatter plot?

Crossrefs

Cf. A000203, A003961, A003973, A033879, A153881, A336851, A337386 (positions of terms <= 0), A346246 (Dirichlet inverse), A349387, A378216, A378231 [= a(n^2)].
Inverse Möbius transform of A337544.

Programs

  • PARI
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A344587(n) = { my(u=A003961(n)); (u+u - sigma(u)); };

Formula

a(n) = A033879(A003961(n)) = 2*A003961(n) - A003973(n).
a(n) = Sum_{d|n} A337544(d).
From Antti Karttunen, Nov 23 2024: (Start)
a(n) = Sum_{d|n} A003961(d)*A153881(n/d) = A003961(n) - A336851(n).
a(n) = Sum_{d|n} A033879(d)*A349387(n/d).
a(n) = Sum_{d|n} A003972(d)*A378216(n/d).
(End)

A104967 Matrix inverse of triangle A104219, read by rows, where A104219(n,k) equals the number of Schroeder paths of length 2n having k peaks at height 1.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -1, -1, -3, 1, -1, 0, 0, -4, 1, -1, 1, 2, 2, -5, 1, -1, 2, 3, 4, 5, -6, 1, -1, 3, 3, 3, 5, 9, -7, 1, -1, 4, 2, 0, 0, 4, 14, -8, 1, -1, 5, 0, -4, -6, -6, 0, 20, -9, 1, -1, 6, -3, -8, -10, -12, -14, -8, 27, -10, 1, -1, 7, -7, -11, -10, -10, -14, -22, -21, 35, -11, 1, -1, 8, -12, -12, -5, 0, 0, -8, -27, -40, 44, -12, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 30 2005

Keywords

Comments

Row sums equal A090132 with odd-indexed terms negated. Absolute row sums form A104968. Row sums of squared terms gives A104969.
Riordan array ((1-2*x)/(1-x), x(1-2*x)/(1-x)). - Philippe Deléham, Dec 05 2015

Examples

			Triangle begins:
   1;
  -1,  1;
  -1, -2,  1;
  -1, -1, -3,  1;
  -1,  0,  0, -4,  1;
  -1,  1,  2,  2, -5,  1;
  -1,  2,  3,  4,  5, -6,  1;
  -1,  3,  3,  3,  5,  9, -7,  1;
  -1,  4,  2,  0,  0,  4, 14, -8,  1;
  -1,  5,  0, -4, -6, -6,  0, 20, -9, 1; ...
		

Crossrefs

Cf. A347171 (rows reversed, up to signs).

Programs

  • Magma
    A104967:= func< n,k | (&+[(-2)^j*Binomial(k+1, j)*Binomial(n-j, k): j in [0..n-k]]) >;
    [A104967(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 09 2021
  • Maple
    A104967:= (n,k)-> add( (-2)^j*binomial(k+1, j)*binomial(n-j, k), j=0..n-k);
    seq(seq( A104967(n,k), k=0..n), n=0..12); # G. C. Greubel, Jun 09 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= Which[k==n, 1, k==0, 0, True, T[n-1, k-1] - Sum[T[n-i, k-1], {i, 2, n-k+1}]];
    Table[T[n, k], {n, 13}, {k, n}]//Flatten (* Jean-François Alcover, Jun 11 2019, after Peter Luschny *)
  • Maxima
    T(n,k):=sum((-2)^i*binomial(k+1,i)*binomial(n-i,k),i,0,n-k); /* Vladimir Kruchinin, Nov 02 2011 */
    
  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^k)); polcoeff(polcoeff((1-2*X)/(1-X-X*Y*(1-2*X)),n,x),k,y)}
    for(n=0, 16, for(k=0, n, print1(T(n, k), ", ")); print(""))
    
  • Sage
    def A104967_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)-sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, k) for k in (1..n)]
    for n in (1..10): print(A104967_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

G.f.: A(x, y) = (1-2*x)/(1-x - x*y*(1-2*x)).
Sum_{k=0..n} T(n, k) = (-1)^n*A090132(n).
Sum_{k=0..n} abs(T(n, k)) = A104968(n).
Sum_{k=0..n} T(n, k)^2 = A104969(n).
T(n,k) = Sum_{i=0..n-k} (-2)^i*binomial(k+1,i)*binomial(n-i,k). - Vladimir Kruchinin, Nov 02 2011
Sum_{k=0..floor(n/2)} T(n-k, k) = A078011(n+2). - G. C. Greubel, Jun 09 2021

A135494 Triangle read by rows: row n gives coefficients C(n,j) for a Sheffer sequence (binomial-type) with lowering operator (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } where T(x) is Cayley's Tree function.

Original entry on oeis.org

1, -1, 1, -1, -3, 1, -1, -1, -6, 1, -1, 5, 5, -10, 1, -1, 19, 30, 25, -15, 1, -1, 49, 49, 70, 70, -21, 1, -1, 111, -70, -91, 70, 154, -28, 1, -1, 237, -883, -1218, -861, -126, 294, -36, 1, -1, 491, -4410, -4495, -3885, -2877, -840, 510, -45, 1
Offset: 1

Views

Author

Tom Copeland, Feb 08 2008

Keywords

Comments

The lowering (or delta) operator for these polynomials is L = (D-1)/2 + T{ (1/2) * exp[(D-1)/2] } and the raising operator is R = 2t * { 1 - T[ (1/2) * exp[(D-1)/2] ] }, where T(x) is the tree function of A000169. In addition, L = E(D,1) = A(D) where E(x,t) is the e.g.f. of A134991 and A(x) is the e.g.f. of A000311, so L = sum(j=1,...) A000311(j) * D^j / j! also. The polynomials and operators can be generalized through A134991.
Also the Bell transform of A153881. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
Exponential Riordan array [2 - exp(x), 1 + 2*x - exp(x)] belonging to the derivative subgroup of the exponential Riordan group. See the example section for a factorization of this array as an infinite product of arrays. - Peter Bala, Feb 13 2025

Examples

			The triangle begins:
  [1]  1;
  [2] -1,  1;
  [3] -1, -3,  1;
  [4] -1, -1, -6,   1;
  [5] -1,  5,  5, -10,   1;
  [6] -1, 19, 30,  25, -15,   1;
  [7] -1, 49, 49,  70,  70, -21, 1.
P(3,t) = [B(.,-t) + 2t]^3 = B(3,-t) + 3B(2,-t)2t + 3B(1,-t)(2t)^2 + (2t)^3 = (-t + 3t^2 - t^3) + 3(-t + t^2)(2t) + 3(-t)(2t)^2 + (2t)^3 = -t - 3t + t^3.
From _Peter Bala_, Feb 13 2025: (Start)
The array factorizes as an infinite product of lower triangular arrays:
  /  1               \    / 1             \ / 1             \ / 1             \
  | -1   1           |   | -1  1          | | 0 -1          | | 0  1          |
  | -1  -3   1       | = | -1 -2   1      | | 0 -1  1       | | 0  0  1       | ...
  | -1  -1  -6   1   |   | -1 -3  -3  1   | | 0 -1 -2  1    | | 0  0 -1  1    |
  | -1   5   5 -10  1|   | -1 -4  -6 -4  1| | 0 -1 -3 -3  1 | | 0  0 -1 -2  1 |
  |...               |   |...             | |...            | |...            |
where the first array in the product on the right-hand side is A154926. (End)
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
  • G. Rota, Finite Operator Calculus, Academic Press, New York, 1975.

Crossrefs

Cf. A298673 for the inverse matrix.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n=0,1,-1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    max = 8; s = Series[Exp[t*(-Exp[x]+2*x+1)], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]*n!; Table[t[n, k], {n, 0, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 23 2014 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[# == 0, 1, -1] &, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)

Formula

Row polynomials are P(n,t) = Sum_{j=1..n} C(n,j) * t^j = [ Bell(.,-t) + 2t ]^n, umbrally, where Bell(j,t) are the Touchard/Bell/exponential polynomials described in A008277, with P(0,t) = 1.
E.g.f.: exp{ t * [ -exp(x) + 2x + 1] } and [ P(.,t) + P(.,s) ]^n = P(n,s+t).
The lowering operator gives L[P(n,t)] = n * P(n-1,t) = (D-1)/2 * P(n,t) + Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2).
The raising operator gives R[P(n,t)] = P(n+1,t) = 2t * { P(n,t) - Sum_{j>=1} j^(j-1) * 2^(-j) / j! * exp(-j/2) * P(n,t + j/2) } .
Therefore P(n+1,t) = 2t * { [ (1+D)/2 * P(n,t) ] - n * P(n-1,t) }.
P(n,1) = (-1)^n * A074051(n) and P(n,-1) = A126617(n).
See Rota, Roman, Mathworld or Wikipedia on Sheffer sequences and umbral calculus for more formulas, including expansion theorems.
From Tom Copeland, Jan 20 2018: (Start)
Define Q(n,z;w) = [Bell(.,w)+z]^n. Then Q(n,z;w) are a sequence of Appell polynomials with e.g.f. exp[(exp(t)-1+z)*w], lowering operator D = d/dz, and raising operator R = z + w*exp(D), and exp[(exp(D)-1)w] z^n = exp[Bell(.,w)D] z^n = Q(n,z;w) = e^(-w) (w d/dw + z)^n e^w = e^(-w) exp(a.w) = exp[(a. - 1)w] with (a.)^k = a_k = (k + z)^n and (a. - 1)^m = sum{k = 0,..,m} (-1)^k a^(m-k). Then P(n,t) = Q(n,2t;-t).
For example, exp[(a. - 1)w] = (a. - 1)^0 + (a. - 1)^1 w + (a. - 1)^2 w^2/2! + ... = a_0 + (a_1 - a_0) w + (a_2 - 2a_1 + a_0) w^2/2! + ... = z^n + [(1+z)^n - z^n] w + [(2+z)^n - 2(1+z)^n + z^n] w^2/2! + ... . (End)
T(n+1, k) = Sum_{i = 0..n} s(n,k)*binomial(n, i)*T(i, k-1), where s(n,i) = 1 if i = n else -1. - Peter Bala, Feb 13 2025

Extensions

More terms from Vincenzo Librandi, Jan 21 2018

A378645 Dirichlet convolution of A055615 and A103977.

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 3, -1, 1, -1, -1, -1, 3, -1, -1, -1, -1, -1, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -1, 11, -1, -1, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 7, -1, -1, -1, -3, -1, -1, -1, -1, -1, 11, -1, -1, -1, 3, -1, -1, -1, -1, -1, -1, -1, 11, -1, 5, -1, -1, -1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2024

Keywords

Crossrefs

Cf. A055615, A263837, A103977, A153881, A378646 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} A055615(d)*A103977(n/d).
a(n) = A153881(n) always when n is a non-abundant number (A263837), and also for some of the abundant numbers, A005101.

A154926 Signed version of Pascal's triangle. Diagonal positive, rest negative.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -1, -3, -3, 1, -1, -4, -6, -4, 1, -1, -5, -10, -10, -5, 1, -1, -6, -15, -20, -15, -6, 1, -1, -7, -21, -35, -35, -21, -7, 1, -1, -8, -28, -56, -70, -56, -28, -8, 1
Offset: 1

Views

Author

Mats Granvik, Jan 17 2009

Keywords

Comments

Matrix inverse of this lower triangular array is A154921. Signs in columns as in sequence A153881.
Exponential Riordan array [2-exp(x),x]. - Paul Barry, Apr 06 2011

Examples

			From _Mats Granvik_, Jul 24 2009: (Start)
Table begins:
.1
-1....1
-1...-2....1
-1...-3...-3....1
-1...-4...-6...-4....1
-1...-5..-10..-10...-5....1
-1...-6..-15..-20..-15...-6....1
-1...-7..-21..-35..-35..-21...-7....1
-1...-8..-28..-56..-70..-56..-28...-8....1
-1...-9..-36..-84.-126.-126..-84..-36...-9....1
-1..-10..-45.-120.-210.-252.-210.-120..-45..-10....1
-1..-11..-55.-165.-330.-462.-462.-330.-165..-55..-11....1
(End)
		

Crossrefs

A193731 Mirror of the triangle A193730.

Original entry on oeis.org

1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

A193731 is obtained by reversing the rows of the triangle A193730.
Triangle T(n,k), read by rows, given by (1,2,0,0,0,0,0,0,0,...) DELTA (2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
   1;
   1,   2;
   3,   8,   4;
   9,  30,  28,   8;
  27, 108, 144,  80,  16;
  81, 378, 648, 528, 208, 32;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193731
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return k+1;
      else return 3*T(n-1, k) + 2*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 2; b = 1; c = 2; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193730 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]     (* A193731 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
  • SageMath
    def T(n, k): # T = A193731
        if (k<0 or k>n): return 0
        elif (n<2): return k+1
        else: return 3*T(n-1, k) + 2*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023

Formula

T(n,k) = A193730(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x)/(1-3*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 20 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = 2*A006234(n+2).
T(n, 2) = 4*A080420(n-2).
T(n, 3) = 8*A080421(n-3).
T(n, 4) = 16*A080422(n-4).
T(n, 5) = 32*A080423(n-5).
T(n, n) = A000079(n).
T(n, n-1) = A130129(n-1).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A153881(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007483(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000012(n). (End)

A200659 Triangle T(n,k), read by rows, given by (1,2,2,3,3,4,4,5,5,6,6,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 71, 132, 76, 16, 1, 461, 955, 670, 200, 25, 1, 3447, 7782, 6309, 2374, 435, 36, 1, 29093, 70441, 63833, 28413, 6713, 833, 49, 1, 273343, 701352, 694500, 351512, 99868, 16240, 1456, 64, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 20 2011

Keywords

Examples

			Triangle begins :
1
1, 1
3, 4, 1
13, 21, 9, 1
71, 132, 76, 16, 1
461, 955, 670, 200, 25, 1
3447, 7782, 6309, 2374, 435, 36, 1
29093, 70441, 63833, 28413, 6713, 833, 49, 1
273343, 701352, 694500, 351512, 99868, 16240, 1456, 64, 1
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A003319(n), A111537(n), A111546(n), A111556(n), A177354(n-1) for x = -2,-1,0,1,2,3,4 respectively.
Sum_ {k, 0<=k<=n} T(n,k)*x^(n-k) = A000012(n), A111537(n), A167872(n) for x = 0,1,2 respectively.
T(k+1,k)=(k+1)^2.

A209130 Triangle of coefficients of polynomials v(n,x) jointly generated with A102756; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 9, 12, 5, 1, 14, 31, 27, 8, 1, 20, 65, 89, 55, 13, 1, 27, 120, 230, 222, 108, 21, 1, 35, 203, 511, 684, 514, 205, 34, 1, 44, 322, 1022, 1777, 1834, 1125, 381, 55, 1, 54, 486, 1890, 4095, 5442, 4563, 2367, 696, 89, 1, 65, 705, 3288, 8625
Offset: 1

Views

Author

Clark Kimberling, Mar 05 2012

Keywords

Comments

Top edge: (1,2,3,5,8,...) = A000045(n+1), Fibonacci numbers.
Alternating row sums: 1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,...
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012

Examples

			First five rows:
  1;
  1,  2;
  1,  5,  3;
  1,  9, 12,  5;
  1, 14, 31, 27,  8;
First three polynomials v(n,x):
  1
  1 + 2x
  1 + 5x + 3x^2.
From _Philippe Deléham_, Mar 08 2012: (Start)
(1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  5,  3,  0;
  1,  9, 12,  5,  0;
  1, 14, 31, 27,  8,  0;
  1, 20, 65, 89, 55, 13, 0; ...
with row sums 1, 1, 3, 9, 27, 81, 243, 729, ... (powers of 3). (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A102756 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209130 *)

Formula

u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-x-y*x+y*x^2-y^2*x^2)/(1-(2+y)*x-(y^2-1)*x^2).
Sum_{k=0..n, n>=1} T(n,k)*x^k = A153881(n), A000012(n), A000244(n-1), A126473(n-1) for x = -1, 0, 1, 2 respectively. (End)

A326477 Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0

Views

Author

Peter Luschny, Jul 08 2019

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
		

Crossrefs

Row sums A094088. Alternating row sums A153881 starting at 0.
Main diagonal A001147. Associated set partitions A241171.
A129062 (m=1, associated with A131689), this sequence (m=2), A326587 (m=3, associated with A278073), A326585 (m=4, associated with A278074).

Programs

  • Maple
    CL := f -> PolynomialTools:-CoefficientList(f, x):
    FL := s -> ListTools:-Flatten(s, 1):
    StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
    `if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
    L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
    FL([seq(StirPochConv(2,n), n = 0..7)]);
  • Mathematica
    P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
    T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
    Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
  • Sage
    def StirPochConv(m, n):
        z = var('z'); R = ZZ[x]
        F = [i/m for i in (1..m-1)]
        H = hypergeometric([], F, (z/m)^m)
        P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
        L = P.list()
        S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
        return expand(S).list()
    for n in (0..6): print(StirPochConv(2, n))

Formula

For m >= 1 let P(m,0) = 1 and P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)*P(m, n-k)*x for n > 0. Then T_{m}(n, k) = Sum_{k=0..n} ([x^k]P(m, n))*rf(x,k)/k! where rf(x,k) are the rising factorial powers. T(n, k) = T_{2}(n, k).

A367824 Array read by ascending antidiagonals: A(n, k) is the numerator of (R(n) - k)/(n + k), where R(n) is the digit reversal of n, with A(0, 0) = 1.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 1, 0, -1, -1, 1, 3, 1, -1, -3, -1, 1, 2, 1, 0, -1, -2, -1, 1, 5, 3, 1, -1, -3, -5, -1, 1, 3, 1, 1, 0, -1, -1, -3, -1, 1, 7, 5, 1, 1, -1, -1, -5, -7, -1, 1, 4, 3, 2, 1, 0, -1, -2, -3, -4, -1, 1, 0, 7, 5, 3, 1, -1, -3, -5, -7, -9, -1
Offset: 0

Views

Author

Stefano Spezia, Dec 02 2023

Keywords

Comments

This array generalizes A367727.

Examples

			The array of the fractions begins:
  1,  -1,   -1,   -1,   -1,   -1,    -1,    -1, ...
  1,   0, -1/3, -1/2, -3/5, -2/3,  -5/7,  -3/4, ...
  1, 1/3,    0, -1/5, -1/3, -3/7,  -1/2,  -5/9, ...
  1, 1/2,  1/5,    0, -1/7, -1/4,  -1/3,  -2/5, ...
  1, 3/5,  1/3,  1/7,    0, -1/9,  -1/5, -3/11, ...
  1, 2/3,  3/7,  1/4,  1/9,    0, -1/11,  -1/6, ...
  1, 5/7,  1/2,  1/3,  1/5, 1/11,     0, -1/13, ...
  1, 3/4,  5/9,  2/5, 3/11,  1/6,  1/13,     0, ...
  ...
The array of the numerators begins:
  1, -1, -1, -1, -1, -1, -1, -1, ...
  1,  0, -1, -1, -3, -2, -5, -3, ...
  1,  1,  0, -1, -1, -3, -1, -5, ...
  1,  1,  1,  0, -1, -1, -1, -2, ...
  1,  3,  1,  1,  0, -1, -1, -3, ...
  1,  2,  3,  1,  1,  0, -1, -1, ...
  1,  5,  1,  1,  1,  1,  0, -1, ...
  1,  3,  5,  2,  3,  1,  1,  0, ...
  ...
		

Crossrefs

Cf. A367825 (denominator), A367826 (antidiagonal sums).

Programs

  • Mathematica
    A[0,0]=1; A[n_,k_]:=Numerator[(FromDigits[Reverse[IntegerDigits[n]]]-k)/(n+k)]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten

Formula

A(1, n) = -A026741(n-1) for n > 0.
A(2, n) = -A060819(n-2) for n > 2.
A(3, n) = -A060789(n-3) for n > 3.
A(4, n) = -A106609(n-4) for n > 3.
A(5, n) = -A106611(n-5) for n > 4.
A(6, n) = -A051724(n-6) for n > 5.
A(7, n) = -A106615(n-7) for n > 6.
A(8, n) = -A106617(n-8) = A231190(n) for n > 7.
A(9, n) = -A106619(n-9) for n > 8.
A(10, n) = -A106612(n-10) for n > 9.
Previous Showing 21-30 of 36 results. Next