cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A130154 Triangle read by rows: T(n, k) = 1 + 2*(n-k)*(k-1) (1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 9, 7, 1, 1, 9, 13, 13, 9, 1, 1, 11, 17, 19, 17, 11, 1, 1, 13, 21, 25, 25, 21, 13, 1, 1, 15, 25, 31, 33, 31, 25, 15, 1, 1, 17, 29, 37, 41, 41, 37, 29, 17, 1, 1, 19, 33, 43, 49, 51, 49, 43, 33, 19, 1, 1, 21, 37, 49, 57, 61, 61, 57, 49, 37, 21, 1
Offset: 1

Views

Author

Emeric Deutsch, May 22 2007

Keywords

Comments

Column k, except for the initial k-1 0's, is an arithmetic progression with first term 1 and common difference 2(k-1). Row sums yield A116731. First column of the inverse matrix is A129779.
Studied by Paul Curtz circa 1993.
From Rogério Serôdio, Dec 19 2017: (Start)
T(n, k) gives the number of distinct sums of 2(k-1) elements in {1,1,2,2,...,n-1,n-1}. For example, T(6, 2) = the number of distinct sums of 2 elements in {1,1,2,2,3,3,4,4,5,5}, and because each sum from the smallest 1 + 1 = 2 to the largest 5 + 5 = 10 appears, T(6, 2) = 10 - 1 = 9. [In general: 2*(Sum_{j=1..(k-1)} n-j) - (2*(Sum_{j=1..k-1} j) - 1) = 2*n*(k-1) - 4*(k-1)*k/2 + 1 = 2*(k-1)*(n-k) + 1 = T(n, k). - Wolfdieter Lang, Dec 20 2017]
T(n, k) is the number of lattice points with abscissa x = 2*(k-1) and even ordinate in the closed region bounded by the parabola y = x*(2*(n-1) - x) and the x axis. [That is, (1/2)*y(2*(k-1)) + 1 = T(n, k). - Wolfdieter Lang, Dec 20 2017]
Pascal's triangle (A007318, but with apex in the middle) is formed using the rule South = West + East; the rascal triangle A077028 uses the rule South = (West*East + 1)/North; the present triangle uses a similar rule: South = (West*East + 2)/North. See the formula section for this recurrence. (End)

Examples

			The triangle T(n, k) starts:
  n\k  1  2  3  4  5  6  7  8  9 10 ...
  1:   1
  2:   1  1
  3:   1  3  1
  4:   1  5  5  1
  5:   1  7  9  7  1
  6:   1  9 13 13  9  1
  7:   1 11 17 19 17 11  1
  8:   1 13 21 25 25 21 13  1
  9:   1 15 25 31 33 31 25 15  1
 10:   1 17 29 37 41 41 37 29 17  1
 ... reformatted. - _Wolfdieter Lang_, Dec 19 2017
		

Crossrefs

Column sequences (no leading zeros): A000012, A016813, A016921, A017077, A017281, A017533, A131877, A158057, A161705, A215145.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> 1 + 2*(n-k)*(k-1) ))); # G. C. Greubel, Nov 25 2019
  • Magma
    [1 + 2*(n-k)*(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 25 2019
    
  • Maple
    T:=proc(n,k) if k<=n then 2*(n-k)*(k-1)+1 else 0 fi end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[1+2(n-k)(k-1),{n,0,20},{k,n}]] (* Harvey P. Dale, Jul 13 2013 *)
  • PARI
    T(n, k) = 1 + 2*(n-k)*(k-1) \\ Iain Fox, Dec 19 2017
    
  • PARI
    first(n) = my(res = vector(binomial(n+1,2)), i = 1); for(r=1, n, for(k=1, r, res[i] = 1 + 2*(r-k)*(k-1); i++)); res \\ Iain Fox, Dec 19 2017
    
  • Sage
    [[1 + 2*(n-k)*(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 25 2019
    

Formula

T(n, k) = 1 + 2*(n-k)*(k-1) (1 <= k <= n).
G.f.: G(t,z) = t*z*(3*t*z^2 - z - t*z + 1)/((1-t*z)*(1-z))^2.
Equals = 2 * A077028 - A000012 as infinite lower triangular matrices. - Gary W. Adamson, Oct 23 2007
T(n, 1) = 1 and T(n, n) = 1 for n >= 1; T(n, k) = (T(n-1, k-1)*T(n-1, k) + 2)/T(n-2, k-1), for n > 2 and 1 < k < n. See a comment above. - Rogério Serôdio, Dec 19 2017
G.f. column k (with leading zeros): (x^k/(1-x)^2)*(1 + (2*k-3)*x), k >= 1. See the g.f. of the triangle G(t,z) above: (d/dt)^k G(t,x)/k!|{t=0}. - _Wolfdieter Lang, Dec 20 2017

Extensions

Edited by Wolfdieter Lang, Dec 19 2017

A006137 a(n) = 1 + n/2 + 9*n^2/2.

Original entry on oeis.org

1, 6, 20, 43, 75, 116, 166, 225, 293, 370, 456, 551, 655, 768, 890, 1021, 1161, 1310, 1468, 1635, 1811, 1996, 2190, 2393, 2605, 2826, 3056, 3295, 3543, 3800, 4066, 4341, 4625, 4918, 5220, 5531, 5851, 6180, 6518, 6865, 7221, 7586, 7960, 8343, 8735, 9136, 9546
Offset: 0

Views

Author

Keywords

Comments

72*a(n) - 71 = (18*n+1)^2 = A161705(n)^2 is a perfect square. - Klaus Purath, Jan 14 2022

Crossrefs

Programs

  • Mathematica
    Table[1+n/2+9 n^2/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{1,6,20},40] (* Harvey P. Dale, Oct 05 2012 *)
  • PARI
    a(n)=1+n/2+9*n^2/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = a(n-1) + 9*n - 4 (with a(0)=1). - Vincenzo Librandi, Nov 18 2010
From Klaus Purath, Jan 14 2022: (Start)
a(n) = A276819(n) + n.
A003215(a(n)) - A003215(a(n)-3) = A002378(9*n). (End)
From Stefano Spezia, Dec 25 2022: (Start)
O.g.f.: (1 + 3*x+ 5*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 10*x + 9*x^2)/2. (End)

A082286 a(n) = 18*n + 10.

Original entry on oeis.org

10, 28, 46, 64, 82, 100, 118, 136, 154, 172, 190, 208, 226, 244, 262, 280, 298, 316, 334, 352, 370, 388, 406, 424, 442, 460, 478, 496, 514, 532, 550, 568, 586, 604, 622, 640, 658, 676, 694, 712, 730, 748, 766, 784, 802, 820, 838, 856, 874, 892, 910, 928, 946
Offset: 0

Views

Author

Cino Hilliard, May 10 2003

Keywords

Comments

Solutions to (11^x + 13^x) mod 19 = 17.

Crossrefs

Programs

Formula

a(n) = A006370(A016945(n)). - Reinhard Zumkeller, Apr 17 2008
a(n) = 2*A017221(n). - Michel Marcus, Feb 15 2014
a(n) = A060544(n+2) - 9*A000217(n-1). - Leo Tavares, Oct 15 2022
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(5+4*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(5 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*(A022267(n+1) - A022267(n)). (End)

Extensions

More terms from Reinhard Zumkeller, Apr 17 2008

A154515 a(n) = 648*n^2 + 72*n + 1.

Original entry on oeis.org

721, 2737, 6049, 10657, 16561, 23761, 32257, 42049, 53137, 65521, 79201, 94177, 110449, 128017, 146881, 167041, 188497, 211249, 235297, 260641, 287281, 315217, 344449, 374977, 406801, 439921, 474337, 510049, 547057, 585361, 624961, 665857, 708049, 751537
Offset: 1

Views

Author

Vincenzo Librandi, Jan 11 2009

Keywords

Comments

The identity (648*n^2 + 72*n + 1)^2 - (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as a(n)^2 - A154517(n)*A154519(n)^2 = 1. This is the case s=3 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 - (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Vincenzo Librandi, Jan 30 2012

Crossrefs

Programs

  • Magma
    I:=[721, 2737, 6049]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 30 2012
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {721, 2737, 6049}, 50] (* Vincenzo Librandi, Jan 30 2012 *)
  • PARI
    a(n)=648*n^2+72*n+1 \\ Charles R Greathouse IV, Dec 27 2011
    

Formula

From Colin Barker, Jan 25 2012: (Start)
G.f.: x*(721 + 574*x + x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=721, a(2)=2737, a(3)=6049. (End)
a(n) = 2*A161705(n)^2 - 1. - Bruno Berselli, Jan 31 2012

A154519 a(n) = 216*n + 12.

Original entry on oeis.org

228, 444, 660, 876, 1092, 1308, 1524, 1740, 1956, 2172, 2388, 2604, 2820, 3036, 3252, 3468, 3684, 3900, 4116, 4332, 4548, 4764, 4980, 5196, 5412, 5628, 5844, 6060, 6276, 6492, 6708, 6924, 7140, 7356, 7572, 7788, 8004, 8220, 8436, 8652
Offset: 1

Views

Author

Vincenzo Librandi, Jan 11 2009

Keywords

Comments

The identity (648*n^2 + 72*n + 1)^2 - (9*n^2 + n)*(216*n + 12)^2 = 1 can be written as A154515(n)^2 - A154517(n)*a(n)^2 = 1 (see also the second comment at A154515).

Crossrefs

Programs

Formula

G.f.: x*(228 - 12*x)/(x-1)^2. - Vincenzo Librandi, Jan 30 2012 [corrected by Georg Fischer, May 12 2019]
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 30 2012
a(n) = 12*A161705(n). - Michel Marcus, Aug 19 2018

A215137 a(n) = 17*n + 1.

Original entry on oeis.org

1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239, 256, 273, 290, 307, 324, 341, 358, 375, 392, 409, 426, 443, 460, 477, 494, 511, 528, 545, 562, 579, 596, 613, 630, 647, 664, 681, 698, 715, 732, 749, 766, 783, 800, 817, 834, 851, 868, 885, 902, 919, 936, 953, 970
Offset: 0

Views

Author

Jeremy Gardiner, Aug 04 2012

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,18]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    Range[1, 100, 17]
    LinearRecurrence[{2,-1}, {1,18}, 50] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    for(n=0, 50, print1(17*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
    

Formula

From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+16*x)/(1-x)^2.
E.g.f.: (17*x + 1)*exp(x). (End)

A215144 a(n) = 19*n + 1.

Original entry on oeis.org

1, 20, 39, 58, 77, 96, 115, 134, 153, 172, 191, 210, 229, 248, 267, 286, 305, 324, 343, 362, 381, 400, 419, 438, 457, 476, 495, 514, 533, 552, 571, 590, 609, 628, 647, 666, 685, 704, 723, 742, 761, 780, 799, 818, 837, 856, 875, 894, 913, 932, 951, 970, 989
Offset: 0

Views

Author

Jeremy Gardiner, Aug 04 2012

Keywords

Crossrefs

First differences of A051873.

Programs

  • Magma
    I:=[1,20]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    Range[1, 1000, 19]
    19*Range[0,60]+1 (* Harvey P. Dale, Nov 14 2014 *)
    LinearRecurrence[{2,-1}, {1,20}, 50] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    for(n=0, 50, print1(19*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
    

Formula

From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+18*x)/(1-x)^2.
E.g.f.: (1+19*x)*exp(x). (End)

A382809 a(n) = (6*n + 1)*(12*n + 1)*(18*n + 1).

Original entry on oeis.org

1, 1729, 12025, 38665, 89425, 172081, 294409, 464185, 689185, 977185, 1335961, 1773289, 2296945, 2914705, 3634345, 4463641, 5410369, 6482305, 7687225, 9032905, 10527121, 12177649, 13992265, 15978745, 18144865, 20498401, 23047129, 25798825, 28761265, 31942225, 35349481
Offset: 0

Views

Author

Stefano Spezia, Apr 05 2025

Keywords

Comments

a(n) is a Carmichael number if all the three factors (6*n + 1), (12*n + 1), and (18*n + 1) are prime (see Chernick and Ribenboim).

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 101.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 146.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,1729,12025,38665},31]

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: (1 + 1725*x + 5115*x^2 + 935*x^3)/(1 - x)^4.
E.g.f.: exp(x)*(1 + 1728*x + 4284*x^2 + 1296*x^3).
a(n) = A016921(n) * A017533(n) * A161705(n).
a(n) == 1 (mod 72).

A251731 Least k such that k^3 + q is divisible by 3^n where q is the n-th number congruent to 1 or -1 (mod 18).

Original entry on oeis.org

2, 1, 2, 16, 32, 145, 62, 1363, 3458, 19492, 58928, 89308, 70028, 1594318, 1890551, 189871, 31401806, 47918575, 190704887, 163454602, 502048577, 9481323661, 11627845304, 34656488290, 115450061084, 286130228125, 2303721331049, 1569269836240, 22013516320412
Offset: 1

Views

Author

Michel Lagneau, Dec 07 2014

Keywords

Comments

It is known that k always exists if q is congruent to +-1 mod 18.
The numbers congruent to 1 or -1 (mod 18) are 1, 17, 19, 35, 37, ... = {A161705} UNION {A239129}.
For n >= 2, k^3 == (9 - 18*n - 7*(-1)^n)/2 (mod 3^n) if and only if k - a(n) is divisible by 3^(n-1). - Jinyuan Wang, Feb 13 2020

Examples

			a(1) = 2 because the first number of the form +-1 (mod 18) is 1, and 2^3 + 1 = 9 = 3*3^1;
a(2) = 1 because the second number of the form +-1 (mod 18) is 17, and 1^3 + 17 = 18 = 2*3^2;
a(3) = 2 because the third number of the form +-1 (mod 18) is 19, and 2^3 + 19 = 27 = 3^3;
a(4)= 16 because the fourth number of the form +-1 (mod 18) is 35, and 16^3 + 35 = 4131 = 51*3^4.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local q,R,k;
      if n::odd then q:= 9*n-8 else q:= 9*n-1 fi;
      min(map(subs,[msolve(k^3+q,3^n)],k))
    end proc:
    map(f, [$1..30]); # Robert Israel, Dec 23 2018
  • Mathematica
    lst1={1};Do[lst1=Union[lst1,Union[{18*n+1},{18*n-1}]],{n,1,10}];lst={};Do[k=1;While[Mod[k^3+lst1[[n]],3^n]!=0,k++];Print[n," ",k],{n,1,10}];lst
  • PARI
    a(n) = {if (n % 2, q = 9*(n-1)+1, q = 9*n-1); m = 3^n; k = 1; while ((k^3+q) % m, k++); k;} \\ Michel Marcus, Jan 07 2015
Previous Showing 11-19 of 19 results.