cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 77 results. Next

A076716 Number of distinct factorizations of n! with all factors > 1.

Original entry on oeis.org

1, 1, 2, 7, 21, 98, 392, 2116, 11830, 70520, 425240, 2787810, 19530213, 144890639, 1149978830, 8558078111, 76417516719, 618437486332, 6087770992601, 54574732902278, 525656554130914, 5290117056157616, 61626071051832409, 555057889968635744, 5809502058957961682
Offset: 1

Views

Author

Donald S. McDonald, Oct 27 2002

Keywords

Examples

			a(3) = 2 because 3! = 6 = 2*3 has just 2 factorizations.
a(4) = 7 because 4! = 24 = 2*12 = 2*2*6 = 2*2*2*3 = 2*3*4 = 3*8 = 4*6 has 7 factorizations.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, k) option remember;
          `if`(n>k, 0, 1) +`if`(isprime(n), 0,
          add(`if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    a:= n-> b(n!$2):
    seq(a(n), n=1..12);  # Alois P. Heinz, May 25 2013
  • Mathematica
    c[1, r_] := c[1, r]=1; c[n_, r_] := c[n, r]=Module[{ds, i}, ds=Select[Divisors[n], 1<#<=r&]; Sum[c[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]]; a[n_] := c[n!, n! ]; a/@Range[16] (* c[n, r] is the number of factorizations of n with factors <= r. - Dean Hickerson, Oct 29 2002 *)
  • PARI
    \\ See A318284 for count.
    a(n)={if(n<=1, 1, count(factor(n!)[,2]))} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = A001055(n!).

Extensions

Edited by Robert G. Wilson v, Oct 29 2002
4 more terms from Ryan Propper, May 20 2007
a(20)-a(25) from Andrew Howroyd, Feb 01 2020

A316974 Number of non-isomorphic strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}.

Original entry on oeis.org

1, 1, 4, 14, 49, 173, 652, 2494
Offset: 0

Views

Author

Gus Wiseman, Jul 17 2018

Keywords

Comments

Also the number of unlabeled multigraphs with n edges, allowing loops, spanning an initial interval of positive integers with no equivalent vertices (two vertices are equivalent if in every edge the multiplicity of the first is equal to the multiplicity of the second). For example, non-isomorphic representatives of the a(2) = 4 multigraphs are {(1,2),(1,3)}, {(1,1),(1,2)}, {(1,1),(2,2)}, {(1,1),(1,1)}.

Examples

			Non-isomorphic representatives of the a(3) = 14 strict multiset partitions:
  (112233),
  (1)(12233), (11)(2233), (12)(1233), (112)(233),
  (1)(2)(1233), (1)(12)(233), (1)(23)(123), (2)(11)(233), (11)(22)(33), (12)(13)(23),
  (1)(2)(3)(123), (1)(2)(12)(33), (1)(2)(13)(23).
		

Crossrefs

Extensions

a(7) from Andrew Howroyd, Feb 07 2020

A361966 Irregular table read by rows in which the n-th row consists of all the numbers m such that uphi(m) = n, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 3, 6, 4, 5, 10, 7, 12, 14, 8, 9, 15, 18, 30, 11, 22, 13, 20, 21, 26, 42, 24, 16, 17, 34, 19, 28, 38, 33, 66, 23, 46, 25, 35, 36, 39, 50, 60, 70, 78, 27, 54, 29, 40, 58, 31, 44, 48, 62, 32, 45, 51, 90, 102, 37, 52, 57, 74, 84, 114, 41, 55, 82, 110, 43, 56, 86
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Examples

			The table begins:
  n   n-th row
  --  --------
   1  1, 2;
   2  3, 6;
   3  4;
   4  5, 10;
   5
   6  7, 12, 14;
   7  8;
   8  9, 15, 18, 30;
   9
  10  11, 22;
  11
  12  13, 20, 21, 26, 42;
		

Crossrefs

The unitary version of A032447.

Programs

  • Mathematica
    invUPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && (Length[#] == 1 || CoprimeQ @@ (# + 1)) && Times @@ PrimeNu[# + 1] == 1 &]); Sort@ Join[sol, 2*Select[sol, OddQ]]]; invUPhi[1] = {1, 2}; Table[invUPhi[n], {n, 1, 50}] // Flatten (* using the function f by T. D. Noe at A162247 *)

A077569 Irregular triangle read by rows: row n lists smallest numbers in increasing order of all possible prime signatures with n divisors.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 12, 32, 64, 24, 30, 128, 36, 256, 48, 512, 1024, 60, 72, 96, 2048, 4096, 192, 8192, 144, 16384, 120, 210, 216, 384, 32768, 65536, 180, 288, 768, 131072, 262144, 240, 432, 1536, 524288, 576, 1048576, 3072, 2097152, 4194304, 360, 420
Offset: 1

Views

Author

Amarnath Murthy, Nov 11 2002

Keywords

Comments

There are A001055(n) different prime signatures with n divisors.
If a*b*c... is a factorization of n then the corresponding prime signature is p^(a-1)*q^(b-1)*r^(c-1)... etc.
The corresponding term of the n-th array is obtained by arranging a>b>c>... and p
The n-th row contains A001055(n) terms. Taking the first term of each row gives A005179.

Examples

			The row for n = 12 contains 60,72,96 and 2048, each having 12 divisors, with prime signature p^2qr, p^3q^2, p^5q, p^11.
The triangle begins:
  1;
  2;
  4;
  6, 8;
  16;
  12, 32;
  64;
  24, 30, 128;
  36, 256;
  48, 512;
  1024;
  60, 72, 96, 2048;
  4096;
  192, 8192;
  144, 16384;
  120, 210, 216, 384, 32768;
  65536;
  180, 288, 768, 131072;
  262144;
  240, 432, 1536, 524288;
  576, 1048576;
  3072, 2097152;
  4194304;
  ...
		

References

  • Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

Crossrefs

Programs

  • Mathematica
    row[n_] := Module[{e = f[n] - 1}, Sort[Times @@ (Prime[Range[Length[#]]]^Reverse[#]) & /@ e]]; Table[row[n], {n, 1, 25}] // Flatten (* Amiram Eldar, Jun 28 2025 using the function f by T. D. Noe at A162247 *)

Extensions

More terms from Ray Chandler, Aug 12 2003
Improved definition from T. D. Noe, Aug 31 2008
Edited by N. J. A. Sloane, Sep 05 2008
Name corrected by Amiram Eldar, Jun 28 2025

A080688 Resort the index of A064553 using A080444 and maintaining ascending order within each grouping: seen as a triangle read by rows, the n-th row contains the A001055(n) numbers m with A064553(m)=n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 6, 11, 13, 8, 10, 17, 9, 19, 14, 23, 29, 12, 15, 22, 31, 37, 26, 41, 21, 43, 16, 20, 25, 34, 47, 53, 18, 33, 38, 59, 61, 28, 35, 46, 67, 39, 71, 58, 73, 79, 24, 30, 44, 51, 55, 62, 83, 49, 89, 74, 97, 27, 57, 101, 52, 65, 82
Offset: 1

Author

Alford Arnold, Mar 23 2003

Keywords

Comments

The number 12 can be written as 3*2*2, 4*3, 6*2 and 12 corresponding to each of the four values (12,15,22,31) in the example. Note that A001055(12) = 4. Since A001055(n) depends only on the least prime signature, the values 1,2,4,6,8,12,16,24,30,32,36,... A025487 are of special interest when counting multisets. (see for example, A035310 and A035341).
A064553(T(n,k)) = A080444(n,k) = n for k=1..A001055(n); T(n,1) = A064554(n); T(n,A001055(n)) = A064554(n). - Reinhard Zumkeller, Oct 01 2012
Row n is the sorted list of shifted Heinz numbers of factorizations of n into factors > 1, where the shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1). - Gus Wiseman, Sep 05 2018

Examples

			a(18),a(19),a(20) and a(21) are 12,15,22 and 31 because A064553(12,15,22,31) = (12,12,12,12) similarly, A064553(36,45,66,76,93,95,118,121,149) = (36,36,36,36,36,36,36,36,36)
From _Gus Wiseman_, Sep 05 2018: (Start)
Triangle begins:
   1
   2
   3
   4  5
   7
   6 11
  13
   8 10 17
   9 19
  14 23
  29
  12 15 22 31
  37
  26 41
  21 43
  16 20 25 34 47
Corresponding triangle of factorizations begins:
  (),
  (2),
  (3),
  (2*2), (4),
  (5),
  (2*3), (6),
  (7),
  (2*2*2), (2*4), (8),
  (3*3), (9),
  (2*5), (10),
  (11),
  (2*2*3), (3*4), (2*6), (12).
(End)
		

Programs

  • Haskell
    a080688 n k = a080688_row n !! (k-1)
    a080688_row n = map (+ 1) $ take (a001055 n) $
                    elemIndices n $ map fromInteger a064553_list
    a080688_tabl = map a080688_row [1..]
    a080688_list = concat a080688_tabl
    -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Sort[Table[Times@@Prime/@(f-1),{f,facs[n]}]],{n,20}] (* Gus Wiseman, Sep 05 2018 *)

Extensions

More terms from Sean A. Irvine, Oct 05 2011
Keyword tabf added and definition complemented accordingly by Reinhard Zumkeller, Oct 01 2012

A305150 Number of factorizations of n into distinct, pairwise indivisible factors greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 6, 1, 2, 2, 1, 2, 5, 1, 2, 2, 5, 1, 3, 1, 2, 2, 2, 2, 5, 1, 3, 1, 2, 1, 6, 2, 2, 2, 3, 1, 6, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 1, 5, 1, 3, 5
Offset: 1

Author

Gus Wiseman, May 26 2018

Keywords

Examples

			The a(60) = 6 factorizations are (3 * 4 * 5), (3 * 20), (4 * 15), (5 * 12), (6 * 10), (60). Missing from this list are (2 * 3 * 10), (2 * 5 * 6), (2 * 30).
		

Programs

  • Mathematica
    facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d] &, Select[facs[n/d], Min@@ # >= d &]], {d, Rest[Divisors[n]]}]]; Table[Length[Select[facs[n], UnsameQ@@ # && Select[Tuples[Union[#], 2], UnsameQ@@ # && Divisible@@ # &] == {} &]], {n, 100}]
  • PARI
    A305150(n, m=n, facs=List([])) = if(1==n, 1, my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m)&&factorback(apply(x -> (x%d),Vec(facs))), newfacs = List(facs); listput(newfacs,d); s += A305150(n/d, d-1, newfacs))); (s)); \\ Antti Karttunen, Dec 06 2018

Formula

a(n) <= A045778(n) <= A001055(n). - Antti Karttunen, Dec 06 2018

Extensions

More terms from Antti Karttunen, Dec 06 2018

A362484 Irregular table read by rows in which the n-th row consists of all the numbers m such that iphi(m) = n, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 5, 10, 7, 12, 14, 24, 9, 15, 18, 30, 11, 22, 13, 20, 21, 26, 40, 42, 16, 32, 17, 27, 34, 54, 19, 28, 38, 56, 33, 66, 23, 46, 25, 35, 36, 39, 50, 60, 70, 72, 78, 120, 29, 58, 31, 44, 48, 62, 88, 96, 45, 51, 90, 102, 37, 52, 57, 74, 84, 104, 114, 168
Offset: 1

Author

Amiram Eldar, Apr 22 2023

Keywords

Examples

			The table begins:
  n   n-th row
  --  -----------------------
   1  1, 2;
   2  3, 6;
   3  4, 8;
   4  5, 10;
   5
   6  7, 12, 14, 24;
   7
   8  9, 15, 18, 30;
   9
  10  11, 22;
  11
  12  13, 20, 21, 26, 40, 42;
		

Crossrefs

Cf. A091732, A162247, A362485 (row lengths).
Similar sequences: A032447, A361966, A362213, A362180.

Programs

  • Mathematica
    powQ[n_] := n == 2^IntegerExponent[n, 2]; powfQ[n_] := Length[fact = FactorInteger[n]] == 1 && powQ[fact[[1, 2]]];
    invIPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && AllTrue[# + 1, powfQ] &]); Sort@ Join[sol, 2*sol]]; invIPhi[1] = {1, 2};
    Table[invIPhi[n], {n, 1, 36}] // Flatten (* using the function f by T. D. Noe at A162247 *)

A344086 Flattened tetrangle of strict integer partitions sorted first by sum, then lexicographically.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 4, 3, 2, 4, 1, 5, 3, 2, 1, 4, 2, 5, 1, 6, 4, 2, 1, 4, 3, 5, 2, 6, 1, 7, 4, 3, 1, 5, 2, 1, 5, 3, 6, 2, 7, 1, 8, 4, 3, 2, 5, 3, 1, 5, 4, 6, 2, 1, 6, 3, 7, 2, 8, 1, 9, 4, 3, 2, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 6, 4, 7, 2, 1, 7, 3, 8, 2, 9, 1, 10
Offset: 0

Author

Gus Wiseman, May 11 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (21)(3)
  4: (31)(4)
  5: (32)(41)(5)
  6: (321)(42)(51)(6)
  7: (421)(43)(52)(61)(7)
  8: (431)(521)(53)(62)(71)(8)
  9: (432)(531)(54)(621)(63)(72)(81)(9)
		

Crossrefs

Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of lex gives A118457.
The not necessarily strict version is A193073.
The version for reversed partitions is A246688.
The Heinz numbers of these partitions grouped by sum are A246867.
The ordered generalization is A339351.
Taking colex instead of lex gives A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],lexsort],{n,0,8}]

A353500 Numbers that are the smallest number with product of prime exponents k for some k. Sorted positions of first appearances in A005361, unsorted version A085629.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 144, 216, 288, 432, 864, 1152, 1296, 1728, 2048, 2592, 3456, 5184, 7776, 8192, 10368, 13824, 15552, 18432, 20736, 31104, 41472, 55296, 62208, 73728, 86400, 108000, 129600, 131072, 165888, 194400, 216000, 221184, 259200, 279936, 324000
Offset: 1

Author

Gus Wiseman, May 17 2022

Keywords

Comments

All terms are highly powerful (A005934), but that sequence looks only at first appearances that reach a record, and is missing 1152, 2048, 8192, etc.

Examples

			The prime exponents of 86400 are (7,3,2), and this is the first case of product 42, so 86400 is in the sequence.
		

Crossrefs

These are the positions of first appearances in A005361, counted by A266477.
This is the sorted version of A085629.
The version for shadows instead of exponents is A353397, firsts in A353394.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices, counted by A339095.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime exponents, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
Subsequence of A181800.

Programs

  • Mathematica
    nn=1000;
    d=Table[Times@@Last/@FactorInteger[n],{n,nn}];
    Select[Range[nn],!MemberQ[Take[d,#-1],d[[#]]]&]
    lps[fct_] := Module[{nf = Length[fct]}, Times @@ (Prime[Range[nf]]^Reverse[fct])]; lps[{1}] = 1; q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, (n == 1 || AllTrue[e, # > 1 &]) && n == Min[lps /@ f[Times @@ e]]]; Select[Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]], q] (* Amiram Eldar, Sep 29 2024, using the function f by T. D. Noe at A162247 *)

A318953 Maximum Heinz number of a strict factorization of n into factors > 1.

Original entry on oeis.org

1, 3, 5, 7, 11, 15, 17, 21, 23, 33, 31, 39, 41, 51, 55, 57, 59, 69, 67, 87, 85, 93, 83, 111, 97, 123, 115, 129, 109, 165, 127, 159, 155, 177, 187, 195, 157, 201, 205, 231, 179, 255, 191, 237, 253, 249, 211, 285, 227, 319, 295, 303, 241, 345, 341, 357, 335, 327
Offset: 1

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

The Heinz number of a factorization (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The strict factorizations of 80 are (2*4*10), (2*5*8), (2*40), (4*20), (5*16), (8*10), (80), with Heinz numbers 609, 627, 519, 497, 583, 551, 409 respectively, so a(80) = 627.
		

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Max[Times@@Prime/@#&/@Select[facs[n],UnsameQ@@#&]],{n,100}]
Previous Showing 21-30 of 77 results. Next