cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A386006 a(n) = Sum_{k=0..n} binomial(3*n-2,k).

Original entry on oeis.org

1, 2, 11, 64, 386, 2380, 14893, 94184, 600370, 3850756, 24821333, 160645504, 1043243132, 6794414896, 44360053772, 290244832992, 1902631226010, 12493030680180, 82153313341429, 540953389469312, 3566279609565226, 23536562549993228, 155489358646406149
Offset: 0

Views

Author

Seiichi Manyama, Aug 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n-2,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    Table[Sum[Binomial[3*n-2,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n-2, k));
    

Formula

a(n) = [x^n] (1+x)^(3*n-2)/(1-x).
a(n) = [x^n] 1/((1-x)^(2*n-2) * (1-2*x)).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n-2,k) * binomial(3*n-k-3,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(3*n-k-3,n-k).
G.f.: 1/(g * (2-g) * (3-2*g)) where g = 1+x*g^3 is the g.f. of A001764.

A323324 Coefficients T(n,k) of x^n*y^(n-k)*z^k in function A = A(x,y,z) such that A = 1 + x*B*C, B = 1 + y*C*A, and C = 1 + z*A*B, as a triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 64, 200, 64, 1, 1, 125, 875, 875, 125, 1, 1, 216, 2835, 6272, 2835, 216, 1, 1, 343, 7546, 30870, 30870, 7546, 343, 1, 1, 512, 17472, 118272, 217800, 118272, 17472, 512, 1, 1, 729, 36450, 378378, 1146717, 1146717, 378378, 36450, 729, 1, 1, 1000, 70125, 1056000, 4879875, 8016008, 4879875, 1056000, 70125, 1000, 1, 1, 1331, 126445, 2647359, 17649060, 44088044, 44088044, 17649060, 2647359, 126445, 1331, 1, 1, 1728, 216216, 6086080, 56119635, 201636864, 306330752, 201636864, 56119635, 6086080, 216216, 1728, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 11 2019

Keywords

Comments

Row sums equal A165817(n), the number of compositions of n into 2*n parts, for n >= 0.
Central terms equal 2*A165817(n)^2, for n >= 1.

Examples

			This triangle begins:
1;
1, 1;
1, 8, 1;
1, 27, 27, 1;
1, 64, 200, 64, 1;
1, 125, 875, 875, 125, 1;
1, 216, 2835, 6272, 2835, 216, 1;
1, 343, 7546, 30870, 30870, 7546, 343, 1;
1, 512, 17472, 118272, 217800, 118272, 17472, 512, 1;
1, 729, 36450, 378378, 1146717, 1146717, 378378, 36450, 729, 1;
1, 1000, 70125, 1056000, 4879875, 8016008, 4879875, 1056000, 70125, 1000, 1;
1, 1331, 126445, 2647359, 17649060, 44088044, 44088044, 17649060, 2647359, 126445, 1331, 1;
1, 1728, 216216, 6086080, 56119635, 201636864, 306330752, 201636864, 56119635, 6086080, 216216, 1728, 1; ...
ROW SUMS are
[1, 2, 10, 56, 330, 2002, 12376, 77520, 490314, ..., binomial(3*n-1, n), ...].
CENTRAL TERMS are
[1, 8, 200, 6272, 217800, 8016008, 306330752, ..., 2*binomial(3*n-1, n)^2, ...].
		

Crossrefs

Cf. A323325, A165817 (row sums).

Programs

  • PARI
    {T(n,k) = my(A=1,B=1,C=1); for(i=0,n,
    A = 1 + x*B*C +x*O(x^n);
    B = 1 + y*A*C +y*O(y^n);
    C = 1 + z*A*B +z*O(z^n));
    polcoeff(polcoeff(polcoeff(A,n,x),n-k,y),k,z)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

Sum_{k=0..n} T(n,k) = binomial(3*n-1, n) for n >= 0.
Sum_{k=0..n} k * T(n,k) = n * binomial(3*n-1, n-1), for n >= 0.
T(2*n,n) = 2 * binomial(3*n-1, n)^2 for n >= 1, with a(0) = 1.
T(n,k) = T(n,n-k) for k = 0..n, for n >= 0.
T(n,1) = n^3 for n >= 0.
T(n,2) = n^3*(n^2-1)*(2*n-3)/24 for n >= 0.

A348478 Number of compositions of n into exactly n nonnegative parts such that each positive i-th part has the same parity as i.

Original entry on oeis.org

1, 1, 1, 4, 7, 23, 55, 164, 407, 1235, 3051, 9432, 23431, 72989, 182624, 571384, 1436855, 4511979, 11387467, 35866100, 90782837, 286622226, 727226578, 2300578392, 5848776767, 18533394763, 47197285045, 149769168304, 381956145802, 1213526310665, 3098742448230
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [0,2].
a(3) = 4: [1,2,0], [0,2,1], [3,0,0], [0,0,3].
a(4) = 7: [1,2,1,0], [1,0,1,2], [3,0,1,0], [1,0,3,0], [0,2,0,2], [0,4,0,0], [0,0,0,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
          add(`if`(j=0 or (t-j)::even, b(n-j, t-1), 0), j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n],
         Sum[If[j == 0 || EvenQ[t - j], b[n - j, t - 1], 0], {j, 0, n}]];
    a[n_] :=  b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)

A365771 a(n) = binomial(2*n+1, n)/(2*n+1) * binomial(3*n-1, n) for n >= 0.

Original entry on oeis.org

1, 2, 20, 280, 4620, 84084, 1633632, 33256080, 701149020, 15191562100, 336424047960, 7584833081280, 173575987821600, 4022766574898400, 94247674040476800, 2228957491057276320, 53150802525726081660, 1276661433215969608500, 30863850087221160009000
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2023

Keywords

Comments

Equals the central terms of triangle A365770.
Conjectures: given A033042 is the sums of distinct powers of 5, then
(1) a(5*A033042(n)) == 4 (mod 5) for n > 0,
(2) a(5*A033042(n) + 1) == 2 (mod 5) for n > 0,
(3) a(n) == 0 (mod 5) for n > 0 except when n or n-1 equals 5*A033042(k) for some k >= 0.

Crossrefs

Programs

  • Mathematica
    A365771[n_] := Binomial[2*n + 1, n]/(2*n + 1)*Binomial[3*n - 1, n];
    Array[A365771, 20, 0] (* Paolo Xausa, Oct 12 2024 *)
  • PARI
    {a(n) = binomial(2*n+1, n)/(2*n+1) * binomial(3*n-1, n)}
    for(n=0,30,print1(a(n),", "))
    
  • Python
    from math import comb
    def A365771(n): return comb(m:=(n<<1)+1,n)*comb(m+n-2,n)//m if n else 1 # Chai Wah Wu, Oct 11 2023

Formula

a(n) = A365770(2*n,n) for n >= 0.
a(n) = A000108(n) * A165817(n) for n >= 0.
a(n) = 2*A319578(n) = (2/3) * A007004(n) for n >= 1. - Peter Bala, Aug 25 2025

A373865 Sum over all compositions of 2n into n parts of the least common multiple of the parts.

Original entry on oeis.org

1, 2, 8, 50, 160, 892, 3794, 19560, 80112, 371948, 1614598, 7180494, 30794746, 134269410, 574754496, 2471353090, 10542096528, 45057428356, 191653403306, 814082549052, 3444043955350, 14537736838038, 61174002263338, 256838845740468, 1075631257186986
Offset: 0

Views

Author

Alois P. Heinz, Jun 19 2024

Keywords

Examples

			a(3) = 50 = 2 + 6*6 + 3*4: 222, 123, 132, 213, 231, 312, 321, 114, 141, 411.
		

Crossrefs

Cf. A005430 (the same for sum), A165817 (the same for product), A181851, A260878 (the same for gcd).

Formula

a(n) = A181851(2n,n).

A254747 a(n) = (1 + Sum_{j=0..n} (C(n,j)*C(3*j-1,j))) / 2.

Original entry on oeis.org

1, 2, 8, 47, 312, 2162, 15311, 109965, 797824, 5833298, 42910998, 317224800, 2354712927, 17538747124, 131017428431, 981194304302, 7364370502896, 55380344444150, 417176211054422, 3147365470080480, 23777750075552262
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 07 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (hypergeom([1/3, 2/3, -n], [1/2, 1], -27/4) +2 ) / 3:
    seq(simplify(a(n)), n=0..20); # Peter Luschny, Feb 07 2015
  • Mathematica
    FullSimplify[CoefficientList[Series[1 + x*D[Log[(2*Sin[(1/3)* ArcSin[(3/2)*Sqrt[3]* Sqrt[x/(1 - x)]]])/ (Sqrt[3]*Sqrt[(1 - x)* x])], x], {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 07 2015 *)
    Table[(1 + Sum[Binomial[n, j]*Binomial[3*j-1, j], {j, 0, n}])/2, {n,0,20}] (* Vaclav Kotesovec, Feb 07 2015 after Vladimir Kruchinin *)
  • Maxima
    a(n):=(1+sum(binomial(n,j)*binomial(3*j-1,j),j,0,n))/2;
    
  • PARI
    for(n=0,25, print1((1 + sum(k=0,n, binomial(n,k)*binomial(3*k-1,k)))/2, ", ")) \\ G. C. Greubel, Jun 03 2017

Formula

G.f.: x*G'(x)/G(x), where G(x) = x*(2/sqrt(3*x*(1-x)))*sin((1/3)*asin(3/2*sqrt(3*x/(1-x)))).
a(n) = (hypergeom([1/3,2/3,-n],[1/2,1],-27/4)+2)/3. - Peter Luschny, Feb 07 2015
From Vaclav Kotesovec, Feb 07 2015: (Start)
Recurrence: 2*n*(2*n-1)*a(n) = (43*n^2 - 53*n + 18)*a(n-1) - 3*(35*n^2 - 85*n + 54)*a(n-2) + (n-2)*(97*n - 165)*a(n-3) - 31*(n-3)*(n-2)*a(n-4).
a(n) ~ 31^(n+1/2) / (9 * sqrt(Pi*n) * 2^(2*n+1)).
(End)

A298610 Triangle read by rows, the unsigned coefficients of G(n, n, x/2) where G(n,a,x) denotes the n-th Gegenbauer polynomial, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 2, 0, 3, 0, 12, 0, 10, 10, 0, 60, 0, 35, 0, 105, 0, 280, 0, 126, 56, 0, 756, 0, 1260, 0, 462, 0, 840, 0, 4620, 0, 5544, 0, 1716, 330, 0, 7920, 0, 25740, 0, 24024, 0, 6435, 0, 6435, 0, 60060, 0, 135135, 0, 102960, 0, 24310
Offset: 0

Views

Author

Peter Luschny, Jan 25 2018

Keywords

Examples

			[0]   1
[1]   0,    1
[2]   2,    0,    3
[3]   0,   12,    0,    10
[4]  10,    0,   60,     0,    35
[5]   0,  105,    0,   280,     0,    126
[6]  56,    0,  756,     0,  1260,      0,   462
[7]   0,  840,    0,  4620,     0,   5544,     0,   1716
[8] 330,    0, 7920,     0, 25740,      0, 24024,      0, 6435
[9]   0, 6435,    0, 60060,     0, 135135,     0, 102960,    0,  24310
		

Crossrefs

T(2n, 0) = A165817(n). T(n,n) = A088218(n). Row sums are A213684.
Cf. A109187.

Programs

  • Maple
    with(orthopoly):
    seq(seq((-1)^iquo(n-k, 2)*coeff(G(n,n,x/2),x,k), k=0..n), n=0..9);
  • Mathematica
    p[n_] := Binomial[3 n - 1, n] Hypergeometric2F1[-n, 3 n, n + 1/2, 1/2 - x/4];
    Flatten[Table[(-1)^Floor[(n-k)/2] Coefficient[p[n], x, k], {n,0,9}, {k,0,n}]]

Formula

G(n, x) = binomial(3*n-1, n)*hypergeom([-n, 3*n], [n+1/2], 1/2 - x/4).

A371816 a(n) = Sum_{k=0..floor(n/3)} (-1)^k * binomial(3*n-3*k-1,n-3*k).

Original entry on oeis.org

1, 2, 10, 55, 322, 1947, 12013, 75154, 474946, 3024742, 19381045, 124797862, 806875421, 5234713031, 34060165282, 222174355575, 1452425614146, 9513309908589, 62418283102246, 410161124310550, 2698932409666237, 17781425199962255, 117281204608676426
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k Binomial[3n-3k-1,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Aug 07 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, (-1)^k*binomial(3*n-3*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1+x^3) * (1-x)^(2*n)).
a(n) = binomial(3*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [1/3-n, 2/3-n, 1-n], -1). - Stefano Spezia, Apr 07 2024

A165984 Number of ways to put n indistinguishable balls into n^3 distinguishable boxes.

Original entry on oeis.org

1, 1, 36, 3654, 766480, 275234400, 151111164204, 117774526188844, 123672890985095232, 168324948170849366820, 288216356245328994082600, 606320062786763763996747618, 1537230010624231669678572481296, 4622745700243196227504110670860680
Offset: 0

Views

Author

Thomas Wieder, Oct 03 2009

Keywords

Comments

See A165817 for the case n indistinguishable balls into 2*n distinguishable boxes.
See A054688 for the case n indistinguishable balls into n^2 distinguishable boxes.
a(n) is the number of (weak) compositions of n into n^3 parts. - Joerg Arndt, Oct 04 2017

Examples

			For n = 2 the a(2) = 36 solutions are
[0, 0, 0, 0, 0, 0, 0, 2]
[0, 0, 0, 0, 0, 0, 1, 1]
[0, 0, 0, 0, 0, 0, 2, 0]
[0, 0, 0, 0, 0, 1, 0, 1]
[0, 0, 0, 0, 0, 1, 1, 0]
[0, 0, 0, 0, 0, 2, 0, 0]
[0, 0, 0, 0, 1, 0, 0, 1]
[0, 0, 0, 0, 1, 0, 1, 0]
[0, 0, 0, 0, 1, 1, 0, 0]
[0, 0, 0, 0, 2, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 1]
[0, 0, 0, 1, 0, 0, 1, 0]
[0, 0, 0, 1, 0, 1, 0, 0]
[0, 0, 0, 1, 1, 0, 0, 0]
[0, 0, 0, 2, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0, 1]
[0, 0, 1, 0, 0, 0, 1, 0]
[0, 0, 1, 0, 0, 1, 0, 0]
[0, 0, 1, 0, 1, 0, 0, 0]
[0, 0, 1, 1, 0, 0, 0, 0]
[0, 0, 2, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 1]
[0, 1, 0, 0, 0, 0, 1, 0]
[0, 1, 0, 0, 0, 1, 0, 0]
[0, 1, 0, 0, 1, 0, 0, 0]
[0, 1, 0, 1, 0, 0, 0, 0]
[0, 1, 1, 0, 0, 0, 0, 0]
[0, 2, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 0, 1, 0]
[1, 0, 0, 0, 0, 1, 0, 0]
[1, 0, 0, 0, 1, 0, 0, 0]
[1, 0, 0, 1, 0, 0, 0, 0]
[1, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0, 0]
[2, 0, 0, 0, 0, 0, 0, 0]
		

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n^3+n-1, n): seq(a(n), n=0..16);
  • Mathematica
    Table[Binomial[n^3 + n - 1, n], {n, 0, 13}] (* Michael De Vlieger, Oct 05 2017 *)
  • PARI
    a(n) = binomial(n^3+n-1, n); \\ Altug Alkan, Oct 03 2017

Formula

a(n) = binomial(n^3+n-1, n).
Let denote P(n) = the number of integer partitions of n,
p(i) = the number of parts of the i-th partition of n,
d(i) = the number of different parts of the i-th partition of n,
m(i,j) = multiplicity of the j-th part of the i-th partition of n.
Then one has:
a(n) = Sum_{i=1..P(n)} (n^3)!/((n^3-p(i))!*(Product_{j=1..d(i)} m(i,j)!)).
a(n) = [x^n] 1/(1 - x)^(n^3). - Ilya Gutkovskiy, Oct 03 2017
Previous Showing 21-29 of 29 results.