A214630
a(n) is the reduced numerator of 1/4 - 1/A109043(n)^2 = (1 - 1/A026741(n)^2)/4.
Original entry on oeis.org
-1, 0, 0, 2, 3, 6, 2, 12, 15, 20, 6, 30, 35, 42, 12, 56, 63, 72, 20, 90, 99, 110, 30, 132, 143, 156, 42, 182, 195, 210, 56, 240, 255, 272, 72, 306, 323, 342, 90, 380, 399, 420, 110, 462, 483, 506, 132, 552, 575, 600, 156
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
-
m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3))); // G. C. Greubel, Sep 20 2018
-
CoefficientList[Series[(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((1-x)^3*(x+1)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *)
LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{-1,0,0,2,3,6,2,12,15,20,6,30},60] (* Harvey P. Dale, Jul 01 2019 *)
-
Vec(-(2*x^9+3*x^8+6*x^7+2*x^6+6*x^5+6*x^4+2*x^3-1)/((x-1)^3*(x+ 1)^3*(x^2+1)^3) + O(x^100)) \\ Colin Barker, Jan 22 2015
A259925
a(n) = (n^2 - n - 1)^n.
Original entry on oeis.org
1, -1, 1, 125, 14641, 2476099, 594823321, 194754273881, 83733937890625, 45848500718449031, 31181719929966183601, 25804264053054077850709, 25542038069936263923006961, 29806575070123343006591796875, 40504199006061377874300161158921
Offset: 0
For n = 0, a(0) = (0^2 - 0 - 1)^0 = (-1)^0 = 1.
-
[(n^2 - n - 1)^n: n in [0..20]]; // Vincenzo Librandi, Jul 10 2015
-
A259925:=n->(n^2-n-1)^n: seq(A259925(n), n=0..20); # Wesley Ivan Hurt, Jul 10 2015
-
Table[(n^2 - n - 1)^n, {n, 0, 10}]
-
vector(20, n, n--; (n^2 - n - 1)^n) \\ Michel Marcus, Aug 06 2015
-
[(n**2 - n - 1)**n for n in range(21)] # Anders Hellström, Jul 10 2015
A319070
a(n) is the area of the surface made of the rectangles with vertices (d, n/d), (D, n/d), (D, n/D), (d, n/D) for all (d, D), pair of consecutive divisors of n.
Original entry on oeis.org
0, 1, 4, 4, 16, 7, 36, 12, 24, 19, 100, 17, 144, 39, 44, 32, 256, 33, 324, 41, 72, 103, 484, 40, 160, 147, 108, 65, 784, 57, 900, 80, 152, 259, 228, 66, 1296, 327, 204, 93, 1600, 99, 1764, 137, 160, 487, 2116, 92, 504, 165, 332, 185, 2704, 135, 388
Offset: 1
The divisors of n=12 are {1, 2, 3, 4, 6, 12}. The widths of the rectangles from the definition are obtained by difference: {1, 1, 1, 2, 6}. By symmetry, their heights are the same, but in reverse order: {6, 2, 1, 1, 1}. The sought total area is the sum of products width*height of each rectangle, in other words it is the dot product 1*6 + 1*2 + 1*1 + 2*1 + 6*1. Result: 17. So, a(12)=17.
Cf.
A191743,
A290110 (introducing factorization patterns of sequences of divisors).
Cf.
A165900 (the Fibonacci polynomial).
-
a[n_] := Module[{x = Differences[Divisors[n]]}, Plus @@ (x*Reverse[x])];
Table[a[n], {n, 1, 55}]
-
arect(n, d, D) = (D-d)*(n/d - n/D);
a(n) = my(vd = divisors(n)); sum(k=1, #vd-1, arect(n, vd[k], vd[k+1])); \\ Michel Marcus, Oct 28 2018
A384329
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000217(n) and its long leg and hypotenuse are consecutive natural numbers, n >= 0.
Original entry on oeis.org
-1, 0, 1, 1, 0, 1, 5, 12, 13, 11, 60, 61, 19, 180, 181, 29, 420, 421, 41, 840, 841, 55, 1512, 1513, 71, 2520, 2521, 89, 3960, 3961, 109, 5940, 5941, 131, 8580, 8581, 155, 12012, 12013, 181, 16380, 16381, 209, 21840, 21841, 239, 28560, 28561, 271, 36720, 36721, 305, 46512, 46513, 341, 58140, 58141
Offset: 0
n=0: -1, 0, 1;
n=1: 1, 0, 1;
n=2: 5, 12, 13;
n=3: 11, 60, 61;
...
-
a=Table[(n(n+1))/2,{n,0,18}];Apply[Join,Map[{2#-1,2#^2-2#,2#^2-2#+1}&,a]]
A307991
Fibonacci numbers of the form k^2 - k - 1 with integer k.
Original entry on oeis.org
89 is in the sequence since 89 = 10^2 - 10 - 1 or equivalently 1/89 = 1/10^2 + 1/10^3 + 2/10^4 + 3/10^5 + 5/10^6 + ... This is why the first digits of the decimal expansion of 1/89 = 0.011235... are the first terms of the Fibonacci sequence.
- Fenton Stancliff, A curious property of a_11, Scripta Math., Vol. 19 (1953), p. 126.
A355659
Martingale win/loss triangle, read by rows: T(n,k) = total number of dollars won (or lost) using the martingale method on all possible n trials that have exactly k losses and n-k wins, for 0 <= k <= n.
Original entry on oeis.org
0, 1, -1, 2, 1, -3, 3, 5, -1, -7, 4, 11, 7, -7, -15, 5, 19, 24, 4, -21, -31, 6, 29, 53, 38, -12, -51, -63, 7, 41, 97, 111, 41, -57, -113, -127, 8, 55, 159, 243, 187, 5, -163, -239, -255, 9, 71, 242, 458, 500, 248, -130, -394, -493, -511, 10, 89, 349, 784, 1084, 874, 202, -488, -878, -1003, -1023
Offset: 0
Triangle T(n,k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9
---+-------------------------------------------
0| 0
1| 1 -1
2| 2 1 -3
3| 3 5 -1 -7
4| 4 11 7 -7 -15
5| 5 19 24 4 -21 -31
6| 6 29 53 38 -12 -51 -63
7| 7 41 97 111 41 -57 -113 -127
8| 8 55 159 243 187 5 -163 -239 -255
9| 9 71 242 458 500 248 -130 -394 -493 -511
Examples from triangle:
T(4,3) = -7: In this example, we consider all possibilities with 4 trials that result in 3 losses and one win. There are binomial(4,3) = 4 different combinations to consider (lllw, llwl, lwll, and wlll), which have net earnings of +1, 0, -2, -6 respectively when using the martingale method, giving a total of -7.
T(6,2) = 53: In this example, we have 6 trials and we consider the results with 2 losses and 4 wins. There are binomial(6,2) = 15 such combinations to consider (wwwwll, wwwlwl, wwwllw, wwlwwl, wwlwlw, wwllww, wlwwwl, wlwwlw, wlwlww, wllwww, lwwwwl, lwwwlw, lwwlww, lwlwww, llwwww), and summing over all 15 earnings gives us a total of 53.
T(2,0) = 2: In this example, we have 2 trials, with 0 losses and 2 wins. In this one single case, the martingale method gives us earnings of +1 and +1 with a total of 2.
Comments