cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A048619 a(n) = LCM(binomial(n,0), ..., binomial(n,n)) / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 10, 5, 30, 15, 7, 7, 56, 28, 252, 126, 60, 30, 330, 165, 396, 198, 286, 143, 2002, 1001, 15015, 15015, 7280, 3640, 1768, 884, 15912, 7956, 3876, 1938, 38760, 19380, 406980, 203490, 99484, 49742, 1144066, 572033, 1961256, 980628
Offset: 0

Views

Author

Keywords

Examples

			If n=10 then A002944(10)=2520, A001405(10)=252, the quotient a(10)=10.
		

Crossrefs

Programs

  • Magma
    [Lcm([1..n+1]) div (Floor((n+3)/2)*Binomial(n+1,Floor((n+3)/2))): n in [0..50]]; // Vincenzo Librandi, Jul 10 2019
  • Mathematica
    Table[Apply[LCM, Binomial[n, Range[0, n]]]/Binomial[n, Floor[n/2]], {n, 0, 48}] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    {A048619(n) = lcm(vector(n+1, i, i)) / binomial(n+1, (n+1)\2) / ((n+2)\2);}
    

Formula

a(n) = A002944(n)/A001405(n).
a(n) = lcm(1..n+1)/(floor((n+3)/2)*binomial(n+1,floor((n+3)/2))). - Paul Barry, Jul 03 2006
a(n) = lcm(1,2,...,n+1) / (ceiling((n+1)/2)*binomial(n+1,floor((n+1)/2))) = A003418(n+1) / A100071(n+1). - Max Alekseyev, Oct 23 2015
a(n) = A263673(n+1) / A110654(n+1) = A180000(n+1) / A152271(n). - Max Alekseyev, Oct 23 2015
a(2*n-1) = A068553(n) = A068550(n)/n.

Extensions

Definition corrected and a(0)=1 prepended by Max Alekseyev, Oct 23 2015

A068550 a(n) = lcm{1, ..., 2n} / binomial(2n, n).

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 30, 105, 56, 252, 1260, 330, 1980, 2574, 2002, 15015, 240240, 61880, 15912, 151164, 38760, 406980, 4476780, 1144066, 13728792, 24515700, 6249100, 84362850, 21474180, 5462730, 81940950, 1270084725, 645122400
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2002

Keywords

Comments

Known to be always an integer.

Crossrefs

Bisection of A180000 and A263673.

Programs

  • Mathematica
    a[0] = 1; a[n_] := (LCM @@ Range[2*n])/Binomial[2*n, n]; Array[a, 33, 0] (* Amiram Eldar, Mar 06 2022 *)
  • PARI
    a(n) = lcm([1..2*n])/binomial(2*n, n); \\ Michel Marcus, Mar 06 2022

Formula

a(n) = A099996(n) / A000984(n) = A003418(2*n) / A001405(2*n) = A180000(2*n) = A263673(2*n).
a(n) = n * A068553(n) = n * A048619(2*n-1).

Extensions

a(0)=1 prepended by Max Alekseyev, Oct 23 2015

A163076 Primes of the form k$ - 1. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

5, 19, 29, 139, 251, 12011, 48619, 51479, 155117519, 81676217699, 1378465288199, 5651707681619, 386971244197199, 1580132580471899, 30067266499541039, 6637553085023755473070799, 35257120210449712895193719, 399608854866744452032002440111
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			Since 4$ = 6 the prime 5 is listed.
		

Crossrefs

Cf. A055490, A056040, A163078 (arguments k), A163074, A163075.

Programs

  • Maple
    a := proc(n) select(isprime, map(x -> A056040(x)-1,[$1..n])); sort(%) end:
  • Mathematica
    Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* Jean-François Alcover, Jun 28 2013 *)

Extensions

More terms from Jinyuan Wang, Mar 22 2020

A163079 Primes p such that p$ + 1 is also prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

2, 3, 5, 31, 67, 139, 631, 9743, 16253, 17977, 27901, 37589
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Comments

a(n) are the primes in A163077.

Examples

			5 is prime and 5$ + 1 = 30 + 1 = 31 is prime, so 5 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(isprime,select(k -> isprime(A056040(k)+1),[$0..n])) end:
  • Mathematica
    f[n_] := 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]; p = 2; lst = {}; While[p < 38000, a = f@p + 1; If[ PrimeQ@a, AppendTo[ lst, p]; Print@p]; p = NextPrime@p]; lst (* Robert G. Wilson v, Aug 08 2010 *)
  • PARI
    is(k) = isprime(k) && ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(8)-a(12) from Robert G. Wilson v, Aug 08 2010

A163213 Swinging Wilson remainders ((p-1)$ + (-1)^floor((p+2)/2))/p mod p, p prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 9, 13, 12, 2, 19, 2, 5, 36, 6, 19, 43, 11, 47, 67, 39, 41, 70, 12, 17, 83, 88, 81, 25, 53, 91, 97, 106, 79, 43, 39, 7, 29, 73, 6, 79, 115
Offset: 1

Views

Author

Peter Luschny, Jul 24 2009

Keywords

Comments

If this is zero, p is a swinging Wilson prime.

Examples

			The swinging Wilson quotient related to the 5th prime is (252+1)/11=23, so the 5th term is 23 mod 11 = 1.
		

Crossrefs

Programs

  • Maple
    WR := proc(f,r,n) map(p->(f(p-1)+r(p))/p mod p,select(isprime,[$1..n])) end:
    A002068 := n -> WR(factorial,p->1,n);
    A163213 := n -> WR(swing,p->(-1)^iquo(p+2,2),n);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; Mod[(sf[p - 1] + (-1)^Floor[(p + 2)/2])/p, p]); Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Jun 28 2013 *)
  • PARI
    sf(n)=n!/(n\2)!^2
    apply(p->sf(p-1)\/p%p, primes(100)) \\ Charles R Greathouse IV, Dec 11 2016

A163770 Triangle read by rows interpolating the swinging subfactorial (A163650) with the swinging factorial (A056040).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 3, 4, 6, -9, -7, -4, 0, 6, 44, 35, 28, 24, 24, 30, -165, -121, -86, -58, -34, -10, 20, 594, 429, 308, 222, 164, 130, 120, 140, -2037, -1443, -1014, -706, -484, -320, -190, -70, 70, 6824, 4787, 3344, 2330, 1624, 1140, 820, 630, 560, 630
Offset: 0

Views

Author

Peter Luschny, Aug 05 2009

Keywords

Comments

An analog to the derangement triangle (A068106).

Examples

			1
0, 1
1, 1, 2
2, 3, 4, 6
-9, -7, -4, 0, 6
44, 35, 28, 24, 24, 30
-165, -121, -86, -58, -34, -10, 20
		

Crossrefs

Row sums are A163773.

Programs

  • Maple
    DiffTria := proc(f,n,display) local m,A,j,i,T; T:=f(0);
    for m from 0 by 1 to n-1 do A[m] := f(m);
    for j from m by -1 to 1 do A[j-1] := A[j-1] - A[j] od;
    for i from 0 to m do T := T,(-1)^(m-i)*A[i] od;
    if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi;
    od; subsop(1=NULL,[T]) end:
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    Computes n rows of the triangle.
    A163770 := n -> DiffTria(k->swing(k),n,true);
    A068106 := n -> DiffTria(k->factorial(k),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040).

A163840 Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 16, 11, 8, 6, 47, 31, 20, 12, 6, 146, 99, 68, 48, 36, 30, 447, 301, 202, 134, 86, 50, 20, 1380, 933, 632, 430, 296, 210, 160, 140, 4251, 2871, 1938, 1306, 876, 580, 370, 210, 70, 13102, 8851, 5980, 4042, 2736, 1860, 1280, 910, 700, 630
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

Triangle read by rows.
An analog to the binomial triangle of the factorials (A076571).

Examples

			Triangle begins
    1;
    2,   1;
    5,   3,   2;
   16,  11,   8,   6;
   47,  31,  20,  12,  6;
  146,  99,  68,  48, 36, 30;
  447, 301, 202, 134, 86, 50, 20;
		

Crossrefs

Row sums are A163843.

Programs

  • Maple
    SumTria := proc(f,n,display) local m,A,j,i,T; T:=f(0);
    for m from 0 by 1 to n-1 do A[m] := f(m);
    for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
    for i from 0 to m do T := T,A[i] od;
    if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi;
    od; subsop(1=NULL,[T]) end:
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    # Computes n rows of the triangle:
    A163840 := n -> SumTria(swing,n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.

A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).

Original entry on oeis.org

1, 3, 2, 11, 8, 6, 45, 34, 26, 20, 195, 150, 116, 90, 70, 873, 678, 528, 412, 322, 252, 3989, 3116, 2438, 1910, 1498, 1176, 924, 18483, 14494, 11378, 8940, 7030, 5532, 4356, 3432, 86515, 68032, 53538
Offset: 0

Views

Author

Peter Luschny, Aug 06 2009

Keywords

Comments

For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows.

Examples

			Triangle begins
     1;
     3,    2;
    11,    8,    6;
    45,   34,   26,   20;
   195,  150,  116,   90,   70;
   873,  678,  528,  412,  322,  252;
  3989, 3116, 2438, 1910, 1498, 1176,  924;
		

Crossrefs

Programs

  • Maple
    Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
    a := n -> SumTria(k->swing(2*k),n,true);
  • Mathematica
    sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

A163077 Numbers k such that k$ + 1 is prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 9, 14, 15, 24, 27, 31, 38, 44, 45, 49, 67, 76, 92, 99, 119, 124, 133, 136, 139, 144, 168, 171, 185, 265, 291, 332, 368, 428, 501, 631, 680, 689, 696, 765, 789, 890, 1034, 1233, 1384, 1517, 1615, 1634, 1809, 2632, 2762, 3925, 4419, 5108, 5426
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			0$ + 1 = 1 + 1 = 2 is prime, so 0 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(x -> isprime(A056040(x)+1),[$0..n]) end:
  • Mathematica
    fQ[n_] := PrimeQ[1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range[0, 8660], fQ] (* Robert G. Wilson v, Aug 09 2010 *)
  • PARI
    is(k) = ispseudoprime(1+k!/(k\2)!^2); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(45)-a(56) from Robert G. Wilson v, Aug 09 2010

A163078 Numbers k such that k$ - 1 is prime. Here '$' denotes the swinging factorial function (A056040).

Original entry on oeis.org

3, 4, 5, 6, 7, 10, 13, 15, 18, 30, 35, 39, 41, 47, 49, 58, 83, 86, 102, 111, 137, 151, 195, 205, 226, 229, 317, 319, 321, 368, 389, 426, 444, 477, 534, 558, 567, 738, 804, 882, 1063, 1173, 1199, 1206, 1315, 1624, 1678, 1804, 2371, 2507, 2541, 2844, 3084, 3291
Offset: 1

Views

Author

Peter Luschny, Jul 21 2009

Keywords

Examples

			4$ - 1 = 6 - 1 = 5 is prime, so 4 is in the sequence.
		

Crossrefs

Programs

  • Maple
    a := proc(n) select(x -> isprime(A056040(x)-1),[$0..n]) end:
  • Mathematica
    fQ[n_] := PrimeQ[ -1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range@ 3647, fQ] (* Robert G. Wilson v, Aug 09 2010 *)
  • PARI
    is(k) = ispseudoprime(k!/(k\2)!^2-1); \\ Jinyuan Wang, Mar 22 2020

Extensions

a(42)-a(54) from Robert G. Wilson v, Aug 09 2010
Previous Showing 21-30 of 48 results. Next