cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A266531 Square array read by antidiagonals upwards: T(n,k) = n-th number with k odd divisors.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 6, 18, 15, 16, 7, 25, 21, 81, 32, 10, 36, 27, 162, 45, 64, 11, 49, 30, 324, 63, 729, 128, 12, 50, 33, 625, 75, 1458, 105, 256, 13, 72, 35, 648, 90, 2916, 135, 225, 512, 14, 98, 39, 1250, 99, 5832, 165, 441, 405, 1024, 17, 100, 42, 1296, 117, 11664, 189, 450, 567, 59049, 2048, 19, 121, 51, 2401, 126, 15625
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2016

Keywords

Comments

T(n,k) is the n-th positive integer with exactly k odd divisors.
This is a permutation of the natural numbers.
T(n,k) is also the n-th number j with the property that the symmetric representation of sigma(j) has k subparts (cf. A279387). - Omar E. Pol, Dec 27 2016
T(n,k) is also the n-th positive integer with exactly k partitions into consecutive parts. - Omar E. Pol, Aug 16 2018

Examples

			The corner of the square array begins:
    1,  3,  9, 15,   81,  45,   729, 105,  225,  405, ...
    2,  5, 18, 21,  162,  63,  1458, 135,  441,  567, ...
    4,  6, 25, 27,  324,  75,  2916, 165,  450,  810, ...
    8,  7, 36, 30,  625,  90,  5832, 189,  882,  891, ...
   16, 10, 49, 33,  648,  99, 11664, 195,  900, 1053, ...
   32, 11, 50, 35, 1250, 117, 15625, 210, 1089, 1134, ...
   64, 12, 72, 39, 1296, 126, 23328, 231, 1225, 1377, ...
  128, 13, 98, 42, 2401, 147, 31250, 255, 1521, 1539, ...
  ...
		

Crossrefs

A069289 Sum of odd divisors of n <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 1, 6, 4, 1, 1, 4, 6, 1, 4, 1, 1, 9, 1, 1, 4, 8, 6, 4, 1, 1, 4, 6, 8, 4, 1, 1, 9, 1, 1, 11, 1, 6, 4, 1, 1, 4, 13, 1, 4, 1, 1, 9, 1, 8, 4, 1, 6, 13, 1, 1, 11, 6, 1, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 14 2002

Keywords

Comments

a(n) = Sum{d : d = A182469(n,k), d <= A000196(n), k=1..A001227(n)}. - Reinhard Zumkeller, Apr 05 2015

Crossrefs

Programs

  • Haskell
    a069289 n = sum $ takeWhile (<= a000196 n) $ a182469_row n
    -- Reinhard Zumkeller, Apr 05 2015
  • Mathematica
    Table[Total[Select[Divisors[n],OddQ[#]&&#<=Sqrt[n]&]],{n,120}] (* Harvey P. Dale, Jul 16 2017 *)
  • PARI
    a(n) = my(ir = sqrtint(n)); sumdiv(n, d, (d % 2) * (d <= ir) * d); \\ Michel Marcus, Jan 14 2014
    

Formula

G.f.: Sum_{k>=1} (2*k - 1) * x^((2*k - 1)^2) / (1 - x^(2*k - 1)). - Ilya Gutkovskiy, Apr 04 2020

A136655 Product of odd divisors of n.

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 7, 1, 27, 5, 11, 3, 13, 7, 225, 1, 17, 27, 19, 5, 441, 11, 23, 3, 125, 13, 729, 7, 29, 225, 31, 1, 1089, 17, 1225, 27, 37, 19, 1521, 5, 41, 441, 43, 11, 91125, 23, 47, 3, 343, 125, 2601, 13, 53, 729, 3025, 7, 3249, 29, 59, 225, 61, 31, 250047, 1, 4225, 1089
Offset: 1

Views

Author

Jonathan Vos Post, Jun 25 2008

Keywords

Comments

Product of rows of triangle A182469. - Reinhard Zumkeller, May 01 2012

Crossrefs

Programs

  • Haskell
    a136655 = product . a182469_row  -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    with(numtheory); f:=proc(n) local t1,i,k; t1:=divisors(n); k:=1; for i in t1 do if i mod 2 = 1 then k:=k*i; fi; od; k; end; # N. J. A. Sloane, Jul 14 2008
  • Mathematica
    Array[Times @@ Select[Divisors@ #, OddQ] &, 66] (* Michael De Vlieger, Aug 03 2017 *)
    a[n_] := (oddpart = n/2^IntegerExponent[n, 2])^(DivisorSigma[0, oddpart]/2); Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
  • PARI
    a(n) = my(d=divisors(n)); prod(k=1, #d, if (d[k]%2, d[k], 1)); \\ Michel Marcus, Aug 04 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A136655(n):
        d = divisor_count(m:=n>>(~n&n-1).bit_length())
        return isqrt(m)**d if d&1 else m**(d>>1) # Chai Wah Wu, Jun 27 2025

Formula

a(p) = p if p noncomposite; a(2^n) = 1; a(pq) = p^2 * q^2 when p, q are odd primes.
a(n) = sqrt(n^od(n)/2^ed(n)), where od(n) = number of odd divisors of n = tau(2*n)-tau(n) and ed(n) = number of even divisors of n = 2*tau(n)-tau(2*n). - Vladeta Jovovic, Jun 25 2008
Also a(n) = A007955(A000265(n)). - David Wilson, Jun 26 2008
a(n) = Product_{h == 1 mod 4 and h | n}*Product_{i == 3 mod 4 and i | n}.
a(n) = Product_{j == 1 mod 6 and j | n}*Product_{k == 5 mod 6 and k | n}.
a(n) = A140210(n)*A140211(n). - R. J. Mathar, Jun 27 2008
a(n) = A007955(n) / A125911(n).

Extensions

More terms from N. J. A. Sloane, Jul 14 2008
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A261697 Irregular triangle read by rows in which row n lists the odd divisors of n in the ordering given by A261699.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 9, 3, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 15, 3, 5, 1, 1, 17, 1, 3, 9, 1, 19, 1, 5, 1, 21, 3, 7, 1, 11, 1, 23, 1, 3, 1, 25, 5, 1, 13, 1, 27, 3, 9, 1, 7, 1, 29, 1, 3, 15, 5, 1, 31, 1, 1, 33, 3, 11, 1, 17, 1, 35, 5, 7, 1, 3, 9, 1, 37, 1, 19, 1, 39, 3, 13, 1, 5, 1, 41, 1, 3, 21, 7, 1, 43, 1, 11, 1, 45, 3, 5, 15, 9
Offset: 1

Views

Author

Omar E. Pol, Sep 21 2015

Keywords

Comments

Positive terms of A261699.
Note that this ordering is unusual.
Row lengths give A001227.
Row sums give A000593.
Another version of A182469 from which differs at a(14), or T(9,2).
For a similar version see A261698 from which differs at a(34), or T(18,2).

Examples

			List of divisors of 45 from distinct sequences:
45th row of triangle A182469: 1, 3, 5, 9, 15, 45.
45th row of triangle A261698: 1, 45, 3, 15, 5, 9.
45th row of this triangle...: 1, 45, 3, 5, 15, 9.
Triangle begins:
  1;
  1;
  1,  3;
  1;
  1,  5;
  1,  3;
  1,  7;
  1;
  1,  9,  3;
  1,  5;
  1, 11;
  1,  3;
  1, 13;
  1,  7;
  1, 15,  3,  5;
  1;
  1, 17;
  1,  3,  9;
  1, 19;
  1,  5;
  1, 21,  3,  7;
  ...
		

Crossrefs

A379379 Sum of odd divisors of n except the "e" odd divisors described in A005279.

Original entry on oeis.org

1, 1, 4, 1, 6, 1, 8, 1, 13, 6, 12, 1, 14, 8, 19, 1, 18, 1, 20, 1, 32, 12, 24, 1, 31, 14, 40, 1, 30, 1, 32, 1, 48, 18, 41, 1, 38, 20, 56, 1, 42, 1, 44, 12, 49, 24, 48, 1, 57, 31, 72, 14, 54, 1, 72, 1, 80, 30, 60, 1, 62, 32, 95, 1, 84, 1, 68, 18, 96, 41, 72, 1, 74
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2024

Keywords

Comments

Shares infinitely many terms with A000593.
a(n) = A000593(n) if n is not in A005279.
a(n) < A000593(n) if n is in A005279.
Conjectures from Omar E. Pol, Aug 27 2025: (Start)
a(n) is the sum of the smallest numbers of the 2-dense sublists of divisors of n.
a(n) is the sum of the divisors p of n such that p is greater than twice the adjacent previous divisor of n. (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{d = Partition[Divisors[n], 2, 1]}, 1 + Total[Select[d, OddQ[#[[2]]] && #[[2]] >= 2*#[[1]] &][[;; , 2]]]]; Array[a, 100] (* Amiram Eldar, Dec 22 2024 *)

Extensions

More terms from Alois P. Heinz, Dec 22 2024

A037283 Replace n with concatenation of its odd divisors.

Original entry on oeis.org

1, 1, 13, 1, 15, 13, 17, 1, 139, 15, 111, 13, 113, 17, 13515, 1, 117, 139, 119, 15, 13721, 111, 123, 13, 1525, 113, 13927, 17, 129, 13515, 131, 1, 131133, 117, 15735, 139, 137, 119, 131339, 15, 141, 13721, 143, 111, 13591545, 123, 147, 13, 1749, 1525, 131751
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037283 = read . concat . (map show) . a182469_row :: Integer -> Integer
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    dtn[ L_ ] := Fold[ 10#1+#2&, 0, L ] Array[ dtn[ Flatten[ Map[ IntegerDigits, Select[ Divisors[ # ], OddQ ] ] ] ]&, 50 ]
    cod[n_]:=FromDigits[Flatten[IntegerDigits/@Select[Divisors[n],OddQ]]]; Array[cod,60] (* Harvey P. Dale, Jan 24 2014 *)
  • Python
    from sympy import divisors
    def a(n): return int("".join(str(d) for d in divisors(n) if d%2==1))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman

A037284 Replace n with concatenation of its odd divisors >1.

Original entry on oeis.org

0, 0, 3, 0, 5, 3, 7, 0, 39, 5, 11, 3, 13, 7, 3515, 0, 17, 39, 19, 5, 3721, 11, 23, 3, 525, 13, 3927, 7, 29, 3515, 31, 0, 31133, 17, 5735, 39, 37, 19, 31339, 5, 41, 3721, 43, 11, 3591545, 23, 47, 3, 749, 525, 31751
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a037284 n
       | a209229 n == 1 = 0
       | otherwise      = read $ concat $ (map show) $ tail $ a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Mathematica
    Array[FromDigits[Flatten[IntegerDigits/@Rest[Select[Divisors[#], OddQ]]]]&, 60] (* Harvey P. Dale, Mar 03 2014 *)
  • Python
    from sympy import divisors
    def a(n):
      odd_divisors_gt1 = [d for d in divisors(n)[1:] if d%2 == 1]
      if len(odd_divisors_gt1) == 0: return 0
      else: return int("".join(str(d) for d in odd_divisors_gt1))
    print([a(n) for n in range(1, 52)]) # Michael S. Branicky, Dec 31 2020

Extensions

a(36) corrected by Reinhard Zumkeller, May 01 2012

A037285 Replace n with concatenation of its nontrivial odd divisors.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 0, 3, 5, 0, 3, 0, 7, 35, 0, 0, 39, 0, 5, 37, 11, 0, 3, 5, 13, 39, 7, 0, 3515, 0, 0, 311, 17, 57, 39, 0, 19, 313, 5, 0, 3721, 0, 11, 35915, 23, 0, 3, 7, 525, 317, 13, 0, 3927, 511, 7, 319, 29, 0, 3515, 0, 31, 37921, 0, 513, 31133, 0, 17, 323, 5735, 0, 39, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a037285 n
    | a209229 n == 1 = 0
    | a010051 n == 1 = 0
    | otherwise = read $ concat $ (map show) $ delete n $ tail $ a182469_row n
    -- Reinhard Zumkeller, May 01 2012
    
  • Python
    from sympy import divisors
    def a(n):
      nontrivial_odd_divisors = [d for d in divisors(n)[1:-1] if d%2 == 1]
      if len(nontrivial_odd_divisors) == 0: return 0
      else: return int("".join(str(d) for d in nontrivial_odd_divisors))
    print([a(n) for n in range(1, 70)]) # Michael S. Branicky, Dec 31 2020

Extensions

More terms from Erich Friedman

A053636 a(n) = Sum_{odd d|n} phi(d)*2^(n/d).

Original entry on oeis.org

0, 2, 4, 12, 16, 40, 72, 140, 256, 540, 1040, 2068, 4128, 8216, 16408, 32880, 65536, 131104, 262296, 524324, 1048640, 2097480, 4194344, 8388652, 16777728, 33554600, 67108912, 134218836, 268435552, 536870968, 1073744160, 2147483708
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2000

Keywords

Examples

			2*x + 4*x^2 + 12*x^3 + 16*x^4 + 40*x^5 + 72*x^6 + 140*x^7 + 256*x^8 + 540*x^9 + ...
		

Crossrefs

Programs

  • Haskell
    a053636 0 = 0
    a053636 n = sum $ zipWith (*) (map a000010 ods) (map ((2 ^) . (div n)) ods)
                where ods = a182469_row n
    -- Reinhard Zumkeller, Sep 13 2013
    
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] EulerPhi[ d] 2^(n / d), {d, Divisors[ n]}]] (* Michael Somos, May 09 2013 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (d % 2) * eulerphi(d) * 2^(n / d)))} /* Michael Somos, May 09 2013 */
    
  • Python
    from sympy import totient, divisors
    def A053636(n): return (sum(totient(d)<>(~n&n-1).bit_length(),generator=True))<<1) # Chai Wah Wu, Feb 21 2023

Formula

a(n) = n * A063776(n).
a(n) = Sum_{k=1..A001227(n)} A000010(A182469(n,k)) * 2^(n/A182469(n, A001227(n)+1-k)). - Reinhard Zumkeller, Sep 13 2013
G.f.: Sum_{m >= 0} phi(2*m + 1)*2*x^(2*m + 1)/(1 - 2*x^(2*m + 1)). - Petros Hadjicostas, Jul 20 2019

A379630 Irregular triangle read by rows in which row n lists the smallest parts of the partitions of n into consecutive parts followed by the conjugate corresponding odd divisors of n in accordance with the theorem of correspondence described in the Comments lines.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 1, 4, 1, 5, 2, 5, 1, 6, 1, 3, 1, 7, 3, 7, 1, 8, 1, 9, 4, 2, 3, 9, 1, 10, 1, 5, 1, 11, 5, 11, 1, 12, 3, 3, 1, 13, 6, 13, 1, 14, 2, 7, 1, 15, 7, 4, 1, 5, 3, 15, 1, 16, 1, 17, 8, 17, 1, 18, 5, 3, 9, 3, 1, 19, 9, 19, 1, 20, 2, 5, 1, 21, 10, 6, 1, 7, 3, 21, 1, 22, 4, 11, 1, 23, 11, 23, 1, 24, 7, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 28 2024

Keywords

Comments

Theorem of correspondence between the partitions of n into k consecutive parts and the odd divisors of n: given a partition of n into k consecutive parts if k is odd then the corresponding odd divisor of n is k, otherwise if k is even then the corresponding odd divisor of n is the sum of any pair of conjugate parts of the partition (for example the sum of the largest part and the smallest part).
Conjecture: the first A001227(n) terms in the n-th row are also the absolute values of the n-th row of A341971.
The last A001227(n) terms in the n-th row are also the mirror of the n-th row of A261697.

Examples

			Triangle begins:
   1,  1;
   2,  1;
   3,  1,  3,  1;
   4,  1;
   5,  2,  5,  1;
   6,  1,  3,  1;
   7,  3,  7,  1;
   8,  1;
   9,  4,  2,  3,  9,  1;
  10,  1,  5,  1;
  11,  5, 11,  1;
  12,  3,  3,  1;
  13,  6, 13,  1;
  14,  2,  7,  1;
  15,  7,  4,  1,  5,  3, 15,  1;
  16,  1;
  17,  8, 17,  1;
  18,  5,  3,  9,  3,  1;
  19,  9, 19,  1;
  20,  2,  5,  1;
  21, 10,  6,  1,  7,  3, 21,  1;
  ...
For n = 21 the partitions of 21 into consecutive parts are [21], [11, 10], [8, 7, 6], [6, 5, 4, 3, 2, 1].
On the other hand the odd divisors of 21 are [1, 3, 7, 21].
To determine how these partitions are related to the odd divisors we follow the two rules of the theorem as shown below:
The first partition is [21] and the number of parts is 1 and 1 is odd so the corresponding odd divisor of 21 is 1.
The second partition is [11, 10] and the number of parts is 2 and 2 even so the corresponding odd divisor of 21 is equal to 11 + 10 = 21.
The third partition is [8, 7, 6] and the number of parts is 3 and 3 is odd so the corresponding odd divisor of 21 is 3.
The fourth partition is [6, 5, 4, 3, 2, 1] and the number of parts is 6 and 6 is even so the corresponding odd divisor of 21 is equal to 6 + 1 = 5 + 2 = 4 + 3 = 7.
Summarizing in a table:
  --------------------------------------
              Correspondence
  --------------------------------------
    Partitions of 21              Odd
    into consecutive           divisors
         parts                   of 21
  -------------------         ----------
   [21]   ....................     1
   [11, 10]   ................    21
   [8, 7, 6]  ................     3
   [6, 5, 4, 3, 2, 1]  .......     7
.
Then we can make a table of conjugate correspondence in which the four partitions are arrenged in four columns with the smallest parts at the top as shown below:
  ------------------------------------------
           Conjugate correspondence
  ------------------------------------------
    Partitions of 21              Odd
    into consecutive           divisors
    parts as columns             of 21
  -------------------     ------------------
   21   10    6    1       7    3   21    1
    |   11    7    2       |    |    |    |
    |    |    8    3       |    |    |    |
    |    |    |    4       |    |    |    |
    |    |    |    5       |    |    |    |
    |    |    |    6       |    |    |    |
    |    |    |    |_______|    |    |    |
    |    |    |_________________|    |    |
    |    |___________________________|    |
    |_____________________________________|
.
Then removing all rows except the first row we have a table of conjugate correspondence for smallest parts and odd divisors as shown below:
  -------------------     ------------------
    Smallest parts           Odd divisors
  -------------------     ------------------
   21   10    6    1       7    3   21    1
    |    |    |    |_______|    |    |    |
    |    |    |_________________|    |    |
    |    |___________________________|    |
    |_____________________________________|
.
So the 21st row of the triangle is [21, 10, 6, 1, 7, 3, 21, 1].
.
Illustration of initial terms in an isosceles triangle demonstrating the theorem:
.                                          _ _
                                         _|1|1|_
                                       _|2 _|_ 1|_
                                     _|3  |1|3|  1|_
                                   _|4   _| | |_   1|_
                                 _|5    |2 _|_ 5|    1|_
                               _|6     _| |1|3| |_     1|_
                             _|7      |3  | | |  7|      1|_
                           _|8       _|  _| | |_  |_       1|_
                         _|9        |4  |2 _|_ 3|  9|        1|_
                       _|10        _|   | |1|5| |   |_         1|_
                     _|11         |5   _| | | | |_  11|          1|_
                   _|12          _|   |3  | | |  3|   |_           1|_
                 _|13           |6    |  _| | |_  |   13|            1|_
               _|14            _|    _| |2 _|_ 7| |_    |_             1|_
             _|15             |7    |4  | |1|5| |  3|   15|              1|_
           _|16              _|     |   | | | | |   |     |_               1|_
         _|17               |8     _|  _| | | | |_  |_    17|                1|_
       _|18                _|     |5  |3  | | |  9|  3|     |_                 1|_
     _|19                 |9      |   |  _| | |_  |   |     19|                  1|_
   _|20                  _|      _|   | |2 _|_ 5| |   |_      |_                   1|_
  |21                   |10     |6    | | |1|7| | |    3|     21|                    1|
.
The geometrical structure of the above isosceles triangle is defined in A237593. See also the triangle A286001.
Note that the diagram also can be interpreted as a template which after folding gives a 90 degree pop-up card which has essentially the same structure as the stepped pyramid described in A245092.
.
		

Crossrefs

Column 1 gives A000027.
Right border gives A000012.
The sum of row n equals A286014(n) + A000593(n).
The length of row n is A054844(n) = 2*A001227(n).
The partitions of n into consecutive parts are in the n-th row of A299765. See also A286000 and A286001.
The odd divisors of n are in the n-th row of A182469. See also A261697 and A261699.
Previous Showing 11-20 of 29 results. Next